Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  amorphous silicon solar cell
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
One of the main parameters that affect the solar cell performance is cell temperature; the solar cell output decreases with the increase of temperature. Therefore, it is important to select the proper solar cell technology that performs better at a specified location considering its average temperatures. In addition, the solar cell performance is directly reflected on the overall economics of the project. This paper is proposed to evaluate the variations in the performance of different solar cell technologies related to the temperature in Amman, Jordan. Field data of weather station and three PV systems (Poly-crystalline, Mono-crystalline and Thin-film) of identical design parameters were collected from Test Field Project at Applied Science Private University, Shafa Badran, Amman, Jordan. These data were analysed in the following way. estimated specific energy yield (kWh/kWp) for the three different PV systems was calculated depending on the measured value of solar irradiance and technical specifications of the installed solar panels and inverters, then the actual energy yield at different temperatures over one year was compared with the estimated value, so the deviations could be determined and actual temperature coefficients for energy yield could be calculated, knowing that the three PV Systems have identical design parameters (tilt angle, azimuth angle, type and dimensions of mounting structure and inverter size) and same cleaning method and schedule. It was found that the thin-film solar panels are less affected by temperature with temperature coefficient of -0.0984%, and -0.109%, -0.124% for Mono-crystalline and Poly-crystalline respectively. These results can be implemented in the preliminary design steps, specifically in the selection of the solar cell technology to be installed in a specific location.
EN
This paper studies the environmental impact of two different forms of solar power generation in Thailand – that of multicrystalline silicon solar cells, and that of thin film amorphous silicon solar cells. It takes as its study two of the largest solar cell power plants of their kind in Thailand; a multicrystalline silicon plant in the north (generating 90 MW) and a thin film amorphous silicon plant in the centre (generating 55 MW). The Life Cycle Assessment tool (LCA) was used to assess the environmental impact of each stage of the process, from the manufacture of the cells, through to their transportation, installation and eventual recycling. The functional unit of the study was the generation of 1 kWh of power transmitted and distributed by the Electricity Generating Authority of Thailand (EGAT) and Provincial Electricity Authority (PEA). The environmental impact results were calculated in terms of eco-points (Pt) per functional unit of 1 kWh. The characterised data for 1 kWh of solar power generation was then compared with data for 1 kWh of combined cycle and thermal power generation (both in Thailand), using the same set of characterisation factors. After analyzing the results, both forms of solar power energy generation were found to impact upon the studied categories of Human Health, Ecosystem Quality and Resource Depletion, whilst also highlighting the importance of the solar cell module recycling process in decreasing the overall environmental impact. When the two solar cell technologies were compared, the overall impact of the multicrystalline silicon solar cell was found to be higher than that of the thin film amorphous silicon solar cell. Furthermore, when assessing the overall impact against non-renewable power generating technologies such as combined cycle and thermal power generation, the thin film amorphous silicon solar cells were found to have the lowest environmental impact of all technologies studied.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.