Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ambient excitation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An improved damage detection index for a structural component is proposed, using eigenvalues estimated by means of frequency domain decomposition (FDD) and mode contribution subjected to ambient excitation. It is based on vibration measurements obtained from the acceleration data of a simple steel beam. Since the extraction of modal parameters involves practical limitations and, in general, it is difficult to obtain accurate results, therefore in the proposed method a derivative value of the time series acceleration response, termed modal contributing parameter (MCP), is used in combination with eigenfrequencies. The damage is indicated by element stiffness reduction (ESR). Different damage cases for various stiffness reduction values of 1% to 15% were investigated. Damage identification indices for every single damage and multiple damage cases were calculated. The modified MCP damage detection index showed a high index value, even for low-level damage with an element stiffness reduction of as low as 1% over the existing frequency drop and indices based on mode shape change. MCP index derived from the modal response, considering modal contributions to the entire structural response and eigenvalues for damage detection, improved overall sensitivity and reliability of index results. Both single and multiple cases of damage provided equally accurate results based on the MCP index value.
2
Content available remote Energy Harvesting From Bistable Systems Under Random Excitation
EN
The transformation of otherwise unused vibrational energy into electric energy through the use of piezoelectric energy harvesting devices has been the subject of numerous investigations. The mechanical part of such a device is often constructed as a cantilever beam with applied piezo patches. If the harvester is designed as a linear resonator the power output relies strongly on the matching of the natural frequency of the beam and the frequency of the harvested vibration which restricts the applicability since most vibrations which are found in built environments are broad-banded or even totally random. A possible approach to overcome this restriction is the use of permanent magnets to impose a nonlinear restoring force on the beam that leads to a broader operating range due to large amplitude motions over a large range of excitation frequencies. In this paper such a system is considered introducing a refined modeling with multiple spacial ansatz functions and a refined modeling of the magnet beam interaction. The corresponding probability density function in case of random excitation is calculated by the solution of the corresponding Fokker-Planck equation and compared with results from Monte Carlo simulations. Finally some measurements of ambient excitations are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.