Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  aluminium electrode
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study assessed the effectiveness of integrating electrocoagulation, magnetic fields, and ozonation technologies to remove chemical oxygen demand (COD) and total suspended solids (TSS) from tannery wastewater. Furthermore, the effects of their key operating factors were determined. To achieve this goal, an electrocoagulation reactor coupled with a magnetic-field generator was used and the response surface methodology was applied through a Box-Behnken experimental design. Here, current intensity (I), treatment time (T), and ozone concentration (O3) are considered the influencing factors. Likewise, the removal percentages of COD and TSS serve as response indicators. The results indicate that T, I, and O3 are significant for the removal of COD and TSS at a confidence level of p-value < 0.05. For COD, the optimal operating conditions are I = 6.8 A, T = 30 min, and O3 = 10 mg/l; and for TSS, the optimal conditions are I = 5.72 A, T = 28 min, and O3 = 7.8 mg/l. These conditions yield removal efficiencies of 41.8% for COD and 97.9% for TSS. The findings suggest that integrating these technologies is a viable alternative for mitigating the pollution issues caused by the tannery industry.
EN
Increasing the reliance on pharmaceuticals such as analgesics, antibiotics, antidepressants, and other medications harms the environment and human health. The electrocoagulation process is a modern and crucial technology for treating various pollutants. This paper uses electrocoagulation technology (EC) to remove the most widely used antibiotic, ciprofloxacin (CIP) from an aqueous solution. The proposed approach was experimentally implemented in a batch reactor equipped with (aluminium sheets) that act as electrodes (cathode and anode) arranged vertically in a monopolar parallel mode (MP-P). Different operating parameters were considered, in this work, including inter-electrode distance (IED), pH of the solution, current density (CD), electrolysis time (ET), initial concentration of CIP (Co), and concentration of supporting electrolyte NaCl. Several experiments were performed, and the results revealed that EC has successfully applied with a high removal efficiency of 98.48% under optimum operating conditions: a gap between electrodes = 1 cm, current density = 1.5 mA/cm2, electrolysis time = 60 min, pH = 5, initial CIP concentration = 50 mg/l, and NaCl = 500 mg/l. The experimental results confirmed that the EC process provides a strategy for removing CIP from wastewater with a high removal efficacy and low energy consumption, additionally offering an increased opportunity for using Al-EC cells to treat antibiotic contaminants.
EN
The surface treatment industry generates effluents with a high load of highly toxic chemicals which must be treated under increasingly stringent regulation. The aim of this study was to treat the effluents of surface treatment unit of an aeronautical industry by the electrocoagulation process using aluminium electrodes. This process is used to study the performance to remove colloidal load, significant amount of oxidizable material and high levels of various metal elements (Cr, Fe, Zn, Cu and Al) from these effluents, under optimum conditions of pH 7, 8.6A of current intensity and 60 min of application. The electrocoagulation process was found to be effective in reducing turbidity (97.12%), COD (97.5%), SS (97.84%) and conductivity (96.82%), hexavalent chromium (99.99%), Zn (96.82%), Cu (94.3%), Iron (99.9%), Al (91.96%). The treated effluent conformed to the Moroccan standards of surface treatment discharge.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.