Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  alometria
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of this study was to identify the determinants of peak power achieved during vertical jumps in order to clarify relationship between the height of jump and the ability to exert maximum power. Methods: One hundred young (16.8±1.8 years) sportsmen participated in the study (body height 1.861 ± 0.109 m, body weight 80.3 ± 9.2 kg). Each participant performed three jump tests: countermovement jump (CMJ), akimbo countermovement jump (ACMJ), and spike jump (SPJ). A force plate was used to measure ground reaction force and to determine peak power output. The following explanatory variables were included in the model: jump height, body mass, and the lowering of the centre of mass before launch (countermovement depth). A model was created using multiple regression analysis and allometric scaling. Results: The model was used to calculate the expected power value for each participant, which correlated strongly with real values. The value of the coefficient of determination R2 equalled 0.89, 0.90 and 0.98, respectively, for the CMJ, ACMJ, and SPJ jumps. The countermovement depth proved to be a variable strongly affecting the maximum power of jump. If the countermovement depth remains constant, the relative peak power is a simple function of jump height. Conclusions: The results suggest that the jump height of an individual is an exact indicator of their ability to produce maximum power. The presented model has a potential to be utilized under field condition for estimating the maximum power output of vertical jumps.
EN
Light environments can have a considerable influence on how plants respond to defoliation through influencing the biomass allocation patterns and internal C/N ratio. Seedlings of Lolium perenne, a common perennial grass species, were grown for eight weeks under three different light environments (natural light, red light and shading) and two different defoliation treatments (no defoliation versus 50% aboveground biomass removal). This study was conducted to examine (1) the effects of light regimes and defoliation on biomass accumulation, biomass allocation and internal C/N ratio status in plants; (2) how the light regimes influence the pattern of compensatory growth after defoliation; and (3) the relationship between compensatory growth and the internal C/N ratio status. We found that red light altered the shoot-to-root allometry, enhanced the leaf C concentrations and induced N deficiency. By contrast, the leaf N concentrations of L. perenne were greater during shading treatment, which simultaneously enhanced shoot growth and stopped root growth. Under defoliation, red light increased shoot growth, not at the expense of root growth, which was not the same as in natural light and shading treatment. Moreover, regardless of the unclipped (no defoliation) and defoliation conditions, the L. perenne biomass partitioning between roots and shoots was significantly correlated with the leaf N concentrations and C/N ratio, indicating that allometric biomass allocation can be largely modulated by signals related to the C and N status of the plants. These results demonstrated that the leaf C and N status would be an appropriate indicator of compensatory growth after defoliation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.