This paper studies the output tracking and almost disturbance decoupling problem of nonlinear control systems with uncertainties via fuzzy logic control and feedback linearization approach. The main contribution of this study is to construct a controller, under appropriate conditions, such that the resulting closed-loop system enjoys for any initial condition and bounded tracking signal the following characteristics: input-to-state stability with respect to disturbance inputs and almost disturbance decoupling, i.e., the influence of disturbances on the L2 norm of the output tracking error can be arbitrarily attenuated by increasing some adjustable parameters. The underlying theoretical approaches are the differential geometry approach and the composite Lyapunov approach. One example, which cannot be solved by the approach from the first paper (Marino et al., 1989) on the almost disturbance decoupling problem, is proposed in this paper to exploit the fact that the almost disturbance decoupling and the convergence rate performances are easily achieved by virtue of our approach. In order to demonstrate the practical applicability, the paper takes up the study of an inverted pendulum control system.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper studies the tracking and almost disturbance decoupling problem of nonlinear systems with uncertainties, based on the feedback linearization approach. The main contribution of this study is to construct a controller, under appropriate conditions, such that the resulting closed-loop system is valid for any initial condition and bounded tracking signal with the following characteristics: input-to-state stability with respect to disturbance inputs and almost disturbance decoupling, i.e., the influence of disturbances on the L2 norm of the output tracking error can be arbitrarily attenuated by changing some adjustable parameters. Two examples, which cannot be solved by the first paper on the almost disturbance decoupling problem, are proposed in this paper to exploit the fact that the tracking and the almost disturbance decoupling performances are easily achieved by the proposed approach. In order to demonstrate the practical applicability, the paper has investigated the AMIRA ball and beam system.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.