Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  allometric scaling
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Allometry is the knowledge concerning relations between the features of some beings, like animals, or cities. For example, the daily energy rate is proportional to a mass of mammals rise of 3/4. This way of thinking has spread quickly from biology to many areas of research concerned with sociotechnical systems. It was revealed that the number of innovations, patents or heavy crimes rises as social interaction increases in a bigger city, while other urban indexes such as suicides decrease with social interaction. Enterprise is also a sociotechnical system, where social interaction and accidents at work take place. Therefore, do these interactions increase the number of accidents at work or, on the contrary, are they reduction-driving components? This article tries to catch such links and assess the allometric exponent between the number of accidents at work and the number of employees in an enterprise.
EN
The optimal partitioning theory (OPT) predicts that a plant should allocate relatively more biomass to the organs that acquire the most limiting resource. However, variation in biomass allocation among plant parts can also occur as a plant grows in size. As an alternative approach, allometric biomass partitioning theory (APT) asserts that plants should trade off their biomass between roots, stems and leaves, and this approach can minimize bias when comparing biomass allocation patterns by accounting for plant size in the analysis. We analyzed the biomass allocation strategy of the two species: annual Setaria viridis (L.) Beauv and perennial Pennisetum centrasiaticum Tzvel from the Horqin Sandy Land of northern China by treating them with different availabilities of soil nutrient and water (added in summer and winter), and hypothesized that the two species have different patterns of biomass allocation strategy in response to different soil water content and soil nitrogen content. After taking plant size into account, the biomass allocation strategy of S. viridis and P. centrasiaticum differed in response to nitrogen and water; leaves and root:shoot ratio (RTS) of S. viridis were "true" in response to various soil nitrogen contents. The plasticity of roots was also "true" in response to fluctuation in soil water content. However, P. centrasiaticum showed a different pattern with no shift of biomass allocation strategy in response to nitrogen and water. Adjustment in organs biomass allocation pattern of S. viridis in response to nitrogen and water limitation was dramatic, this suggested that S. viridis support optimal partitioning theory (OPT). P. centrasiaticum has better tolerance to varied environments and more likely support the allometric biomass partitioning theory (APT), this characteristic may allow P. centrasiaticum to keep dominance in fragile habitats.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.