Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  alkali metals
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Odpady wiertnicze, w skład których wchodzi zużyta płuczka i urobek wiertniczy (zwierciny) charakteryzują się dużą zawartością metali, których wodorotlenki alkalizują środowisko. Migracja tych metali do otoczenia stanowi potencjalne zagrożenie dla gleb i wód ze względu na możliwość zakłócania szlaków przemian chemicznych związków mineralnych i organicznych oraz ich toksyczne działanie na organizmy żywe. Wysokie stężenie kationów zasadowych może utrudniać wybór metody zagospodarowania odpadów wiertniczych, ale może być również argumentem za ich stosowaniem w charakterze środka odkwaszającego na rekultywowanych składowiskach odpadów mineralnych zawierających składniki kwasogenne, np. piryt. W celu oceny potencjalnego ryzyka związanego z obecnością odpadów wiertniczych w środowisku glebowym przeprowadzono doświadczenie wazonowe na glebie kwaśnej z dodatkiem odpadów wiertniczych (stanowiących 2,5%, 5%, 10%, 15% mas. podłoża), z użyciem koniczyny łąkowej (Trifolium pratense) jako rośliny testowej. Określono zawartość Ca, Mg, K i Na w podłożach glebowych oraz w biomasie roślin i oceniono wpływ zawartości wielkości dawki odpadu na stężenia poszczególnych metali w podłożu oraz ich akumulację w roślinach. Stwierdzono, że odpady wiertnicze wpłynęły na zwiększenie akumulacji Na, K i Ca w biomasie nadziemnej i korzeniowej koniczyny w stosunku do roślin kontrolnych.
EN
Drilling cuttings were added (2.5-15% by mass) to soil and used for growing red clover (Trifolium pratense). The effect of the concn. of Ca, Mg, K and Na in soil on their bioaccumulation inside the biomass was studied. Migration of the metals inside the plant tissues was also evaluated. The addn. of drilling waste to the soil resulted in an increase in the accumulation of Na, K, and Ca both in the overground and underground parts of the plant.
2
Content available remote Polimeryzacja anionowa inicjowana reagentami przenoszącymi elektrony
EN
This work describes the polymerization processes with electron-transfer reagents. Alkali metals, salts of aromatic hydrocarbons radical anions, and solutions of alkalides, i.e. salts containing alkali metal anions and complexed alkali metal cations, belong to such species [33-39]. The alkali metals transfer one electron to vinyl and diene monomers in the heterogeneous systems [54-73]. The radical anions are also able to transfer one electron [74, 77-82], however, in some cases they behave as nucleophiles [82-85] or bases [86]. These initiators are applied for the polymerization of vinyl and oxacyclic monomers in homogeneous systems. Both of them are named single-electron-transfer (SET) reagents. The alkalides are two-electron-transfer (TET) reagents. Among them potassium potassides K-, K+(18-crown-6) and K-, K+(15-crown-5)2 in tetrahydrofuran solution are mostly used for the polymerization of various monomers [53]. The initiation with these salts is usually a multistage process. An organopotassium compound is formed as the intermediate product which after the protonation by crown ether becomes the real initiator of the polymerization of vinyl monomers [92, 93, 97, 100]. The organometallic intermediate can be also protonated by the monomer or can decompose with the elimination in the systems containing oxiranes [107, 110-113] or lactones [127]. Potassium alkoxides or potassium salts of carboxylic acids, respectively, are the genuine initiators in this case. Crown ethers, known as the stable activators of chemical reactions, can participate in these processes as the reagents [107, 110, 116]. In the ring-opening reaction they form unsaturated potassium alkoxides which serve as the additional initiating agents [53, 97].
EN
The surface area of the iron catalyst for ammonia synthesis impregnated with lithium, sodium, potassium and cesium was examined. The concentration of the respective element (expressed in mole fraction) in the bulk of the catalyst sample was varied from near zero to 1.5-10~3. The increase in the concentration of the promoter led to the decrease of the surface area of the catalyst regardless of the element present in the bulk. The exponential equation has been proposed to describe this dependence. The empirical factor AM o from the mentioned equation, which differs from element to element, was correlated with the difference between the formation enthalpy of A12O3 and the respective alkali metal oxide. The observed dependence obeys a linear law.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.