Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  algorytm Firefly
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Using more efficient tuning techniques becomes imperative, due to the increasing competitiveness in the industry. With this propose, meta-heuristics, such as Firefly Algorithm (FA), can be used to obtain the parameters of the controller according to a cost function, which should encode how good a controller is, adequately expressing the desired specifications, so that the metaheuristic employed can find the desired controller that is able to reach the response wanted. The methods traditionally used for automatic tuning of controlers present difficulties in expressing the desired specifications, being able to mapping the desired search space and allowing that the algorithm finds the proper answer. These difficulties is more evident when more complex controllers are required, as for Multiple Input Multiple Output (MIMO) problems. Aiming to solve these difficulties, a methodology using wavelet transform to describe the behavior of a controller response and its use for obtain better performance of the optimization algorithm. A case study will be done using the quadruple tank system, showing the efficiency of the methodology proposed.
PL
Stosowanie bardziej wydajnych technik strojenia staje się koniecznoscią ze względu na rosnącą konkurencyjnosć w branży. Dzięki tej propozycji meta-heurystyki, takie jak Firefly Algorithm (FA), mogą byc użyte do uzyskania parametrów kontrolera zgodnie z funkcją kosztu, która powinna kodowac, jak dobry jest kontroler, adekwatnie wyrażajac poządane specyfikacje, tak aby zastosowana metaheurystyka moze znaleźć ządany kontroler, który jest w stanie osiągnąć ządaną odpowiedź. Metody tradycyjnie stosowane do automatycznego dostrajania sterowników stwarzają trudnosci w wyrażeniu pożądanych specyfikacji, mozliwości odwzorowania pożądanej przestrzeni wyszukiwania i umozliwienia algorytmowi znalezienia ˙ własciwej odpowiedzi. Trudności te są bardziej widoczne, gdy wymagane są bardziej złozone kontrolery, jak w przypadku problemów z wieloma wejściami i wieloma wyjsciami (MIMO). Mając na celu rozwiązanie tych trudnosci, opracowano metodologię wykorzystującą transformat falkową do opisu zachowania się odpowiedzi sterownika i jej zastosowanie w celu uzyskania lepszej wydajnosci algorytmu optymalizacji. Zostanie przeprowadzone ´ studium przypadku z wykorzystaniem systemu poczwórnego zbiornika, pokazujące skuteczność proponowanej metodologii.
EN
This work attempts to use nitrogen gas as a shielding gas at the cutting zone, as well as for cooling purposes while machining stainless steel 304 (SS304) grade by Computer Numerical Control (CNC) lathe. The major influencing parameters of speed, feed and depth of cut were selected for experimentation with three levels each. Totally 27 experiments were conducted for dry cutting and N2 gaseous conditions. The major influencing parameters are optimized using Taguchi and Firefly Algorithm (FA). The improvement in obtaining better surface roughness and Material Removal Rate (MRR) is significant and the confirmation results revealed that the deviation of the experimental results from the empirical model is found to be within 5%. A significant improvement of reduction of the specific cutting energy by 2.57% on average was achieved due to the reduction of friction at the cutting zone by nitrogen gas in CNC turning of SS 304 alloy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.