Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  algorithm analysis
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this communication we present a hardware-oriented algorithm for constant matrix-vector product calculating, when the all elements of vector and matrix are complex numbers. The main idea behind our algorithm is to combine the advantages of Winograd’s inner product formula with Gauss's trick for complex number multiplication. The proposed algorithm versus the naïve method of analogous calculations drastically reduces the number of multipliers required for FPGA implementation of complex-valued constant matrix-vector multiplication. If the fully parallel hardware implementation of naïve (schoolbook) method for complex-valued matrix-vector multiplication requires 4MN multipliers, 2M N-inputs adders and 2MN two-input adders, the proposed algorithm requires only 3N(M+1)/2 multipliers and [3M(N+2)+1,5N+2] two-input adders and 3(M+1) N/2-input adders.
PL
W komunikacie został zaprezentowany sprzętowo-zorientowany algorytm mnożenia macierzy stałych przez wektor zmiennych w założeniu, gdy zarówno elementy macierzy jak i elementy wektora są liczbami zespolonymi. Główna idea proponowanego algorytmu polega na łącznym zastosowaniu wzoru Winograda do wyznaczania iloczynu skalarnego oraz formuły Gaussa mnożenia liczb zespolonych. W porównaniu z tradycyjnym sposobem realizacji obliczeń proponowany algorytm pozwala zredukować liczbę układów mnożących niezbędnych do całkowicie równoległej realizacji na platformie FPGA układu wyznaczania iloczynu wektorowo-macierzowego. Jeśli całkowicie równoległa implementacja tradycyjnej metody wyznaczania omawianych iloczynów wymaga 4MN bloków mnożących, 2M N-wejściowych sumatorów oraz 2MN sumatorów dwuwejściowych, to proponowany algorytm wymaga tylko 3N(M+1)/2 błoków mnożenia, [3M(N+2)+1,5N+2] sumatorów dwuwejściowych i 3(M+1) sumatorów N/2-wejściowych.
2
Content available remote A Lower Bound for the HBC Transversal Hypergraph Generation
EN
The computation of transversal hypergraphs in output-polynomial time is a long standing open question. An Apriori-like level-wise approach (referred to as the HBC-algorithm or MTminer) was published in 2007 by Hébert, Bretto, and Crémilleux [A Data Mining Formalization to Improve Hypergraph Minimal Transversal Computation, Fundamenta Informaticae, 80(4), 2007, 415–433] and was experimentally demonstrated to have very good performance on hypergraphs with small transversals. In this short note extending the paper by Hagen [Lower bounds for three algorithms for transversal hypergraph generation, Discrete Applied Mathematics, 157(7), 2009, 1460–1469], we prove a superpolynomial lower bound for the HBC-algorithm. This lower bound also shows that the originally claimed upper bound on the HBC-algorithm's running time is wrong.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.