Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 19

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  airborne laser scanning
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The integration of geodetic and photogrammetric data has become a new tool that has expanded the existing measurement capabilities, as well as it found its application outside the geodetic sector. As a result, over the past decades, the process of topographic data acquisition has caused cartographic industry to move from classical surveying methods to passive and active detection methods. The introduction of remote sensing technology has not only improved the speed of data acquisition but has also provided elevation data for areas that are difficult to access and survey. The aim of the work is to analyse consistency of elevation data from the Georeference Database of Topographic Objects (Pol. Baza danych obiektów topograficznych - BDOT500) with data from airborne laser scanning (ALS) for selected 15 research areas located in the City of Kraków. The main findings reveal discrepancies between elevation data sources, potentially affecting the accuracy of various applications, such as flood risk assessment, urban planning, and environmental management. The research gap identified in the study might stem from the lack of comprehensive investigations into the consistency and accuracy of elevation data across different databases and technologies in urban areas. This gap highlights the need for a thorough examination of the reliability of various data sources and methods of urban planning, disaster management, and environmental analysis. The integration of diverse databases and technologies, like ALS and geodetic measurements, in various applications introduces potential discrepancies that can significantly impact decision-making and outcomes.
EN
Currently, the modelling of historic buildings is most often performed on the basis of data obtained by terrestrial laser scanning. It ensures both the speed of information acquisition and the high accuracy of the final elaboration. However, there are situations in which the terrain layout or the structure of the building limits the possibility of obtaining full information on its shape. In such situations, the solution is to integrate data from various measurement devices. In the case of creating a full 3D model of large buildings, one of the ways to supplement the data, especially the roof of the building, is to use data from airborne laser scanning. The research used the integration of airborne laser scanning data with data recorded with the Leica ScanStation P40 terrestrial laser scanner. Combined point clouds were used for 3D modelling of two different historic buildings in Krakow. Modelling was performed with the Bentley CAD software and in Leica Cyclon 3DR and 3DReshaper. The accuracy of data integration was determined and the advantages and disadvantages of using the above-mentioned software for 3D modelling of architectural objects were shown. The result of the study is a 3D model of St. Florian’s Gate and the Palace of Art in Krakow.
EN
The research investigates the possibility of applying Sentinel-2, PlanetScope satellite imageries, and LiDAR data for automation of land cover mapping and 3D vegetation characteristics in post-agricultural areas, mainly in the aspect of detection and monitoring of the secondary forest succession. The study was performed for the tested area in the Biskupice district (South of Poland), as an example of an uncontrolled forest succession process occurring on post-agricultural lands. The areas of interest were parcels where agricultural use has been abandoned and forest succession has progressed. This paper indicates the possibility of automating the process of monitoring wooded and shrubby areas developing in post-agricultural areas with the help of modern geodata and geoinformation methods. It was verified whether the processing of Sentinel-2, PlanetScope imageries allows for reliable land cover classification as an identification forest succession area. The airborne laser scanning (ALS) data were used for deriving detailed information about the forest succession process. Using the ALS point clouds vegetation parameters i.e., height and canopy cover were determined and presented as raster maps, histograms, or profiles. In the presented study Sentinel-2, PlanetScope imageries, and ALS data processing showed a significant differentiation of the spatial structure of vegetation. These differences are visible in the surface size (2D) and the vertical vegetation structure (3D).
PL
W ostatnich latach mieszkańcy polskich miast odczuwają skutki rosnącego niedoboru roślinności. Polityka przestrzenna w tych miastach nie skupia się obecnie na formowaniu nowych terenów zielonych. Istotną informacją dla właściwego zarządzania terenami zielonymi jest ilość drzew, która obrazuje stan roślinności wysokiej na danym terenie. Badaniami został objęty fragment miasta charakteryzującego się wysokim wskaźnikiem intensywności zabudowy. Artykuł prezentuje metodykę automatycznej detekcji drzew na podstawie danych pochodzących z lotniczego skaningu laserowego. Zadrzewienie wykrywano z wykorzystaniem modelowania baldachimowego danych LiDAR (Light Detection and Ranging). W rezultacie otrzymano informację o położeniu drzew. Dzięki różnicy modeli DSM (Digital Surface Model) i DTM (Digital Terrain Model) utworzono numeryczny model koron drzew, który dostarczył informacji o wysokości poszczególnych drzew. Ważną cechą drzewostanu jest ilość drzew i ich powierzchniowe zagęszczenie. Parametry te zmieniają się dynamicznie w trakcie całego okresu żywotności drzewostanu. Podczas realizacji badań przy użyciu oprogramowania GIS zostały obliczone statystyki dotyczące stanu istniejącego zadrzewienia. Przeprowadzone analizy wykazały, że dane laserowe umożliwiają przybliżone oszacowanie ilości drzew oraz dostarczają informacji o ich wymiarach.
EN
In recent years, inhabitants of Polish towns have been affected by an increasing shortfall in green vegetation. The spatial planning policy in those towns is not currently focused on the formation of new green areas. The crucial information for the proper management of green areas is the number of trees, which reflects the current state of high vegetation in the particular region. The study was conducted in respect to the part of town characteristic of a high rate of intensity in housing development. Hereby, the article presents methodology of the automatic detection of trees based on airborne laser scanning data. The detection of trees was performed based on the canopy modeling of LiDAR data (Light Detection and Ranging). As a result, the information about their situation could be obtained. Thanks to the differences between the DSM (Digital Surface Model) and DTM (Digital Terrain Model), it was possible to create a numerical model of tree crowns, which provided data regarding the heights of respective trees. The essential feature of a tree stand is the number of trees and their spatial density. The parameters change dynamically throughout the entire life span of the tree stand. While carrying out the study using GIS software, the statistics concerning the current state of the tree stand were calculated. The conducted analyses proved that laser data enabled an approximate estimation of the number of trees and provided information about their spatial dimensions.
EN
Paper concerning possibilities of using airborne laser scanning (ALS) data for monitoring land cover changes, mainly land abandonment, especially for the aspect of detection forest succession area. Automated method was developed based on the product of ALS data processing − normalized Digital Surface Model (nDSM). The results of ALS data processing were compared with the official cadastral data and the result of photointerpretation and manual vectorization orthophotomap. As a test site was chosen area in Wieliczka district (Małopolska voivodship, south of Poland). The area of study consisted of several plots listed in the cadastral database mainly as agricultural areas, meadows or pastures but most of them not used for agriculture, but abandoned and covered by process of the secondary forest succession. Detailed information about actual land cover was determined for year 2012 based on ALS data from ISOK project (Head of Geodesy and Cartography). Research showed discrepancy between the cadastral data and actual state for plots. Using ALS data, there was possibility in the semi-automatic way to confirm the process of forest succession in the analysed area, according to the results of vectorization orthophotomap.
PL
Artykuł dotyczy oceny możliwości zastosowania danych z lotniczego skanowania laserowego (ALS) do monitorowania pokrycia terenu, głównie w aspekcie detekcji zmiany użytkowania rolniczego gruntów i postępującego procesu sukcesji leśnej. Metoda zautomatyzowana została opracowana w oparciu o produkt przetwarzania danych ALS − znormalizowany Numeryczny Model Pokrycia (zNMPT). Wyniki porównano z danymi ewidencyjnymi oraz wynikiem fotointerpretacji i wektoryzacji ortofotomapy. Jako obszar testowy wybrano teren w powiecie wielickim (woj. małopolskie). Obszar badań obejmował kilkadziesiąt działek wyszczególnionych w ewidencji gruntów jako tereny rolnicze, łąki lub pastwiska Większość analizowanych działek nie była użytkowana rolniczo, lecz objęta procesem wtórnej sukcesji leśnej. Szczegółowe informacje o aktualnym pokryciu terenu określono na rok 2012 w oparciu o dane ALS z projektu ISOK (Główny Urząd Geodezji i Kartografii). W wyniku opracowania wskazano rozbieżności pomiędzy danymi katastralnymi a stanem rzeczywistym. Wykorzystując dane ALS, w zautomatyzowany sposób można było potwierdzić postępujący proces sukcesji leśnej na analizowanym obszarze w odniesieniu do wyników wektoryzacji ortofotomapy
PL
Procesy tworzenia oraz wizualizacji NMT na podstawie danych z lotniczego skaningu laserowego stają się coraz powszechniejsze. Jakość NMT jest uzależniona od wielu czynników. W pracy poddano analizie proces tworzenia NMT w aspekcie zróżnicowania ukształtowania terenu, wielkości siatki GRID oraz metod interpolacji na podstawie danych pozyskanych z projektu ISOK dla fragmentu (1km2) miasta Koszalin. Wykorzystano interpolacje deterministyczne oraz stochastyczną do uzyskania modeli o rozdzielczościach 0.1 m, 0.25 m oraz 0.5 m. Porównano ponadto otrzymane modele ze standardowym NMT pozyskanym z ISOK. Największy wpływ na jakość NMT zbudowanego na podstawie danych LIDAR ma zróżnicowanie terenu. Ponadto w zależności od przeznaczenia modelu sprawdzono, czy zmiana wielkości oczka tworzonego modelu GRID ma wpływ na jakość NMT zwłaszcza w kontekście odwzorowania form morfologicznych rzeźby.
EN
Creating and visualizing DTM based on data from airborne laser scanning become a common practice. Quality of DTM depends on many factors. The paper analyzes the process of creating a DTM in terms of diversity of terrain, the size of grid (the cell size) and methods of interpolation, based on data obtained from the project ISOK for a part (1km2) of the city of Koszalin. Deterministic and stochastic interpolations are used for cellsizes of 0.1 m, 0.25 m and 0.5 m. Moreover, the models were compared with DTM obtained from the ISOK. Diversity of terrain has the biggest impact on the quality of DTM based on LIDAR data. Furthermore, depending on the application of the model, it has been checked if reducing the cellsize of the created model GRID affects the quality of the DTM, especially in the context of mapping morhological forms.
PL
Niniejsza publikacja przedstawia analizę zmian drzewostanów dla obszaru warszawskiej dzielnicy Wilanów, opracowaną na podstawie danych fotogrametrycznych. Wykorzystując różne technologie fotogrametryczne: dopasowanie obrazów cyfrowych i archiwalne lotnicze skanowanie laserowe dokonano wieloczasowej analizy zmian, która pozwoliła na otrzymanie informacji o zasięgu i występowaniu drzew w dwóch badanych okresach. Nadrzędnym problemem postawionym w badaniu było uzyskanie odpowiedzi na pytanie, jak duże zmiany w zasięgu i wysokościach drzewostanów zaszły na przestrzeni lat 2012 - 2017 oraz gdzie nie występują drzewa w 2017 roku. Wytworzone numeryczne modele pokrycia terenu zostały wykorzystane do analizy zmian występowania drzewostanów dla obszaru całej dzielnicy, w tym do detekcji miejsc ubytku koron drzew. Przeprowadzona analiza zmian wykazała ubytek biomasy dla 18.2% pojedynczych drzew, w tym, zniknięcie 11.7% drzew oraz zmniejszenie wysokości (zapewne poprzez przycięcie) dla 6.5%.
EN
This publication presents the analysis of tree stands’ changes for the area of Wilanów district in Warsaw, based on photogrammetric data. Using different photogrammetric techniques, such as image matching techniques and archival airborne laser scanning, a multitemporal analysis of vegetation changes was carried out. It enabled receiving information on the range and occurrence of trees in two different periods of time. The overriding work problem was to answer the question of how noticeable changes in trees stands’ range and height occurred over 2012 - 2017. Generated digital elevation models were used for the analysis of tree stands’ changes in the Wilanów district and the detection of places with the crowns’ loss. The carried analysis of changes showed loss of biomass for 18.2% of single trees, including disappearance of 11.7% of trees and reduction in height (probably by trimming) for 6.5% of trees.
EN
Airborne laser scanning data (ALS) are used mainly for creation of precise digital elevation models. However, it appears that the informative potential stored in ALS data can be also used for updating spatial databases, including the Database of Topographic Objects (BDOT10k). Typically, geometric representations of buildings in the BDOT10k are equal to their entities in the Land and Property Register (EGiB). In this study ALS is considered as supporting data source. The thresholding method of original ALS data with the use of the alpha shape algorithm, proposed in this paper, allows for extraction of points that represent horizontal cross section of building walls, leading to creation of vector, geometric models of buildings that can be then used for updating the BDOT10k. This method gives also the possibility of an easy verification of up-to-dateness of both the BDOT10k and the district EGiB databases within geometric information about buildings. For verification of the proposed methodology there have been used the classified ALS data acquired with a density of 4 points/m2. The accuracy assessment of the identified building outlines has been carried out by their comparison to the corresponding EGiB objects. The RMSE values for 78 buildings are from a few to tens of centimeters and the average value is about 0,5 m. At the same time for several objects there have been revealed huge geometric discrepancies. Further analyses have shown that these discrepancies could be resulted from incorrect representations of buildings in the EGiB database.
PL
Skaning laserowy to technologia dostarczająca we względnie krótkim czasie dużą ilość danych pomiarowych. Jest to zarazem pozytywna jak i negatywna cecha tej technologii. Z jednej strony w wyniku skaningu otrzymuje się dane, które szczegółowo odzwierciedlają pomierzony obiekt. Z drugiej strony trudność sprawia przetwarzanie takiej ilości danych i nie zawsze wszystkie dane ze skaningu są niezbędne do realizacji wybranego zadania. Z tych względów nieustannie trwają prace nad opracowaniem algorytmów umożliwiających usprawnienie ich przetwarzania. Jednym z rozwiązań jest zmniejszenie ilości danych. W pracy przedstawiono wyniki redukcji danych pochodzących z pomiaru lotniczym skaningiem laserowym napowietrznych sieci elektroenergetycznych. Pomiary były przeprowadzone na potrzeby inwentaryzacji. Uzyskaną chmurę punktów przetworzono wykorzystując metodę Optimum Dataset (OptD). Celem było sprawdzenie czy punkty obrazujące linie elektroenergetyczną nie zostaną utracone w trakcie przetwarzania metodą OptD. W metodzie OptD jako kryterium optymalizacyjne przyjęto stopień redukcji czyli jaki procent punktów ma zostać usunięty z oryginalnego zbioru (p%). Badania przeprowadzono dla dwóch przypadków: 1) p%=70%, (zbiór Ω1) oraz 2) p%=85% (zbiór Ω2). Uzyskane wyniki pokazały, że metoda OptD nie zakłóca obrazu linii elektroenergetycznych. Liczba punktów obrazująca linie jest wystarczająca do prawidłowego wyznaczenia przebiegu tej linii.
EN
Laser scanning is a technology that provides a large amount of measurement data in a relatively short time. It is both a positive and a negative feature of this technology. On the one hand, as a result of scanning, data is obtained that accurately reflects the measured object. On the other hand, it is difficult to process such a large amount of data, and not all of the data from the scanning is necessary to accomplish the selected task. For these reasons, works on developing algorithms to improve data processing are constantly conducted. One of the solution is to reduce the amount of data. The paper presents the results of data reduction from surveying of overhead power lines by means of ALS. The measurements were carried out for inventory purposes. The obtained point cloud was processed using the Optimum Dataset method (OptD). The aim was to check whether the points displaying the power lines will not be lost during the OptD processing. In the OptD method as the optimization criterion the degree of reduction was assumed. It is percentage of points which should be removed from the original dataset (p%). The research was carried out for two cases: 1) p% = 70%, (dataset Ω1) and 2) p% = 85% (dataset Ω2). The obtained results showed that the OptD method does not interfere with the image of power lines. The number of points displaying the lines is sufficient to correctly determine the course of this line.
10
Content available Modelowanie cienia w obszarach zurbanizowanych
PL
Światło i promieniowanie słoneczne są czynnikami, które od dawna wywierały znaczny wpływ na proces projektowania środowiska życia człowieka. Zapewnienie prawidłowego oświetlenia przestrzeni otwartych i wnętrz mieszkalnych wymaga uwzględnienia zjawiska zacienienia. Szczególnie ważne okazuje się to na terenach zurbanizowanych, gdzie gęsta zabudowa ogranicza w znacznym stopniu dostęp do światła słonecznego. Wykorzystując komputerowe narzędzia do symulacji można jednak przewidzieć miejsce i czas wystąpienia cienia. W niniejszej pracy zaprezentowano metodę modelowania zjawiska zacienienia przy wykorzystaniu danych z lotniczego skaningu laserowego oraz narzędzi GIS. Zastosowano proste narzędzia do modelowania budynków w oparciu o sklasyfikowaną chmurę punktów oraz numeryczny model pokrycia terenu. Dedykowana aplikacja programu ArcGIS o nazwie Sun Shadow Volume, pozwoliła na budowę bryłowego modelu zacienienia. Umożliwiło to ocenę wpływu zabudowy na ograniczenie dostępu do światła słonecznego na wybranym obszarze badawczym w Warszawie, co przedstawiono za pomocą mapy (rys. 4) i zestawienia tabelarycznego (tab. 2). Dla badanego terenu stwierdzono, że jedynie 11% jego powierzchni spełnia warunki optymalnego nasłonecznienia. Wyniki mogą pomóc w reorganizacji sposobu zagospodarowania i wykorzystania terenu przez mieszkańców okolicznych wieżowców.
EN
Light and solar radiation are the factors which have a big impact on the design process of the human environment. Providing proper lighting for open spaces and households requires considering phenomenon of shading. It is particularly important in urban areas, where the high density of housing limits access to sunlight. Nowadays the man can predict place and time of the shadow by using computer tools. This paper presents a shadow modelling method by using data Airborne Laser Scanning data and GIS tools. Simple three dimensions modelling tools were used in order to create virtual buildings models. It was achieved by means of classification of a lidar point cloud and the result of point interpolation expressed by the digital surface model (DSM). A special ArcGIS software apliaction called Sun Shadow Volume was used in order to generate the shadow solid model. The effect of the analysis was the assessment of the impact of buildings on the limiting access to sunlight in selected green sites in Warsaw what was presented in graphical and tabular forms (Fig. 4, Tab. 2). Calculations show that only 11% of the total area meets the requirements of the optimal solar illumination. The results may help to reorganize the land use and land management ways of the analysed areas.
EN
One of the methods of obtaining highly accurate and current spatial data about the terrain, as well as objects situated on it, is laser scanning. LIDAR (Light Detection and Ranging) is among the most modern, dynamically developing technologies and reveals in surveying new capabilities that have been unachievable in a traditional way so far. The aim of the publication is to show the possibilities of using data from airborne laser scanning to perform the survey and visualization of the energy network, and also identification of hazards which the present network constitutes for the immediate environment using the TerraSolid software package. The survey was conducted for two independent sections of the power line, on the basis of two different clouds of points obtained from the airborne laser scanning. The first one had a density of 16 points/m2, while the other 22 pts/m2. The project was created in an environment of MicroStation V8i software using special overlays – TerraScan and TerraModeler of Finnish TerraSolid Company. The use of the test clouds of different densities was intended to indicate an optimal density of the cloud of points, which allows carrying out a survey and visualization of the energy network based on data derived from airborne laser scanning. The publication presents on particular examples the procedure of vectorization and visualization of the power line and detection of objects within a dangerous distance from it. The possibility of using applied LIDAR data, meeting the industry requirements, to the survey of power lines has been also confirmed.
EN
During the development of the data acquired by airborne laser scanning the important issue is the fitting and georeferencing of ALS point clouds by means of the tie surfaces and the reference planes. The process of scanning strips adjustment is based on mutual integration of point clouds (scanning strips) and their adaptation to the reference planes. In simultaneous adjustment all strips are combined into one geometrically coherent block, to which the coordinates are given. In the process of determining discrepancies between scanning strips it is important to determine the correct size of the shifts (offsets). Authors propose to do this by using RANSAC algorithm.
PL
Podczas opracowywania danych pozyskanych w wyniku lotniczego skaningu laserowego istotną kwestią jest wpasowanie i nadanie georeferencji szeregom ALS w oparciu o powierzchnie wiążące oraz płaszczyzny referencyjne. Proces wyrównania szeregów polega na wzajemnym wpasowaniu szeregów oraz ich dopasowaniu do płaszczyzn referencyjnych. W jednoczesnym procesie wyrównawczym wiąże się wszystkie szeregi w jeden spójny geometrycznie blok, któremu nadaje się współrzędne terenowe. W procesie wyznaczania rozbieżności szeregów istotne jest określenie prawidłowej wielkości przesunięć (offsetów). Autorzy proponują w tym celu wykorzystanie algorytmu RANSAC.
PL
W artykule przedstawiono problematykę budowy katastru solarnego 3D dachów budynków o zróżnicowanej geometrii z wykorzystaniem nowoczesnych danych teledetekcyjnych. Przedstawione zostały możliwości odwzorowania dachów i brył budynków jednorodzinnych na podstawie danych ze skaningu laserowego. Szczególną uwagę zwrócono na weryfikację poprawności klasyfikacji chmury punktów ALS. Dokonano delimitacji i ustalenia ważności kryteriów oceny przydatności połaci dachowych do montażu instalacji solarnych. Uzyskane wyniki wykazały, że przydatność połaci dachowych jest w dużej mierze warunkowana usytuowaniem bryły budynku względem stron świata, występowaniem roślinności wysokiej wokół budynków, jak również uwarunkowaniami geometrycznymi dachu.
EN
This paper describes issues related to a solar cadastre 3D for the roofs of houses with different geometries using modern remote sensing data. We have presented the possibilities of mapping the roofs and solids of single-family houses on the basis of data from a laser scanning. Particular attention was paid to the verification of the correct classification of point clouds ALS. Moreover the delimitation and determination of the validity criteria for assessing the suitability of roof to install solar systems were performed. The results showed that the utility of roofs significantly depends on the location of the building, the high vegetation around the buildings, as well as the determinants of roofs’ geometry.
14
EN
Airborne laser scanning (ALS) is widely used passive remote sensing technique. The radiometric calibration of ALS data is presented in this article. This process is a necessary element in data processing since it eliminates the influence of the external factors on the obtained values of radiometric features such as range and incidence angle. The datasets were captured with three different laser scanners; since each of these operates at a different wavelength (532, 1064 and 1550 nm) this makes the experiment more interesting. Radiometric calibration is a complex process, and a short theoretical background is therefore provided at the beginning of the article. The applied calibration procedure relies on areas with known reflectivity. The calibration regions should exhibit stable radiometric properties, therefore asphalt is used to calibrate each dataset and calculate a calibration constant for each flight block (wavelength) independently. Following this, the results of radiometric calibration, reflectance and backscattering coefficient, are presented and discussed in detail. Finally, the obtained reflectance values are compared with spectral characteristics. It could be shown that the reflectance values which result from radiometric calibration are similar to values presented on spectral characteristics.
PL
Lotniczy skaning laserowy (ALS) jest szeroko wykorzystywaną technologią w pomiarach fotogrametrycznych. Na podstawie dyskretnej rejestracji punktów tworzone są m.in. numeryczne modele terenu (NMT), numeryczne modele pokrycia terenu (NMPT), modele 3D miast. Większość skanerów rejestrujących z pułapu lotniczego pozyskuje dane w zakresie bliskiej podczerwieni. Jednak od pewnego czasu można spotkać się z pojęciem skaningu multispektralnego, który polega na rejestracji danych w więcej niż jednym zakresie spektralnym. Oprócz zakresu podczerwonego (λ=1064 nm), powszechne jest użycie skaningu batymetrycznego rejestrującego w zakresie zielonym oraz zakresie podczerwonym charakteryzującym się inną długością fali (λ=1500 nm). Aby móc korzystać z danych radiometrycznych, które dostarczane dzięki skaningowi multispektralnemu, niezbędne jest przeprowadzenie kalibracji radiometrycznej. Kalibracja radiometryczna jest kluczowym procesem przeprowadzanym podczas przetwarzania zobrazowań z pułapu satelitarnego w teledetekcji. Dzięki kalibracji niwelowany lub całkowicie wyeliminowany zostaje wpływ czynników zewnętrznych na otrzymane wartości radiometryczne. Mniej popularna, lecz również wskazana jest kalibracja radiometryczna w kontekście danych ze skaningu laserowego, kiedy to eliminowany zostaje wpływ m.in. zasięgu i kąta skanowania na rejestrowane wartości intensywności. Wynikiem kalibracji radiometrycznej są wartości współczynnika odbicia dla każdego echa, co wpływa na wzrost możliwości wykorzystania danych ze skaningu. W powyższym artykule zaprezentowane zostały wyniki kalibracji radiometrycznej danych ze skaningu lotniczego. Analizowane dane pochodziły z trzech różnych sensorów, a każdy z nich charakteryzował się inną częstotliwością lasera: 532 nm (lotniczy skaner batymetryczny), 1064 nm (skaner lotniczy) oraz 1550 nm (skaner zamontowany na bezzałogowym statku powietrznym UAV). Wyniki kalibracji zaprezentowane zostały w postaci rastrów oraz histogramów, a następnie omówione zostały różnice między wartościami odbicia w poszczególnych zakresach. W ostatnim rozdziale przeprowadzone zostało porównanie otrzymanych wartości współczynnika odbicia z krzywymi spektralnymi dla wybranych obiektów.
EN
In recent years the term "precise forestry" has been used more and more often, referring to a modern and sustainable model of forest management. Functioning of such management of wood biomass resources is based, among others, on precisely defined and log-term monitored selected forest taxation parameters of single trees and whole forest stands based on modern geoinformation technologies, including Airborne Laser Scanning (ALS) and digital photogrammetry. The purpose of the work was the analysis of the usefulness of the CHM (Canopy Height Model) generated from the image-based point cloud or ALS technology to define the number of trees using the method of the segmentation of single Scots pine (Pinus sylvestris L.) crowns. The study was carried out in the Scots pine stands located in the Bory Tucholskie National Park (Poland). Due to the intentional lack of certain silviculture treatments, over the recent decades, these forest stands have been characterized by relatively high tree density, compared to managed forests. The CHM was generated from digital airborne photos (CIR composition; GSD 0.15 m) and on the other hand - from the ALS point clouds (4 points/m2 ; ISOK project). To generate point clouds from airborne photos using stereomatching method, the PhotoScan Professional (Agisoft) software was applied. The CHM coming from the Image-Based Point Cloud (CHM_IPC; GSD: 0.30 m) and ALS data (CHM_ALS; GSD: 0.75 m) were generated using FUSION (USDA Forest Service) software. The segmentation of tree crowns was carried out in eCognition Developer (TRIMBLE GeoSpatial) software. Apart from height models, also spectral information was used (so-called true CIR orthophotomaps; GSD: 0.3 and 0.75 m). To assess the accuracy of the obtained results, the ground truth data from 248 reference areas were used. The carried out analyses showed that in forest stands of younger age classes (< 120 years) better results were achieved applying the method of image matching (CHM_IPC), while in the case of older stands (> 120 years) the accuracy of the detection rate of tree crowns was the highest when CHM_ALS model was applied. The mean percentage error (defined by the number of trees, based on the detection of single pine crowns), calculated based on 248 ground truth areas was 0.89%, which shows a great potential of digital photogrammetry (IPC) and GEOBIA. In case of almost full nationwide cover in Poland of airborne digital images (present IPC models) and ALS point clouds (DTM and DSM), at almost 71% forest stands in the Polish State Forests National Forest Holding (PGL LP), one can assume wide application of geodata (available free of charge) in precise modelling of selected tree stand parameters all over Poland.
PL
W ostatnich latach coraz częściej w odniesieniu do nowoczesnej i zrównoważonej gospodarki leśnej używa się terminu "precyzyjne leśnictwo". Funkcjonowanie takiego modelu zarządzania zasobami biomasy drzewnej opiera się m.in. na dokładnie określonych i monitorowanych cyklicznie wybranych parametrach taksacyjnych drzewostanów i pojedynczych drzew w oparciu o nowoczesne technologie geoinformacyjne, w tym lotnicze skanowanie laserowe (ang. ALS) oraz fotogrametrię cyfrową. Celem pracy była analiza przydatności Modelu Koron Drzew (ang. CHM) generowanego z chmur punktów pochodzących z automatycznego dopasowania cyfrowych zdjęć lotniczych (ang. Image-Based Point Cloud) lub z technologii ALS w celu określania liczby drzew metodą segmentacji pojedynczych koron sosen. Badania realizowano w drzewostanach sosnowych (Pinus sylvestis L.) na obszarze Parku Narodowego "Bory Tucholskie". Drzewostany te poprzez celowe zaniechanie w ostatnich dekadach pewnych zabiegów hodowlanych charakteryzowały się stosunkowo dużym zagęszczeniem drzew w porównaniu do drzewostanów gospodarczych. Model Koron Drzew wygenerowano w jednym wariancie ze zdjęć lotniczych CIR (GSD 0.15 m) a w drugim z chmur punktów ALS (4 pkt/m2 ; CODGiK ISOK). Do generowania chmur punktów ze zdjęć lotniczych metodą dopasowania zastosowano oprogramowanie Photoscan Professional (Agisoft). Modele Koron Drzew pochodzące z dopasowania zdjęć lotniczych (CHM_IPC; GSD: 0.30 m) oraz z danych ALS (CHM_ALS; GSD: 0.75 m) zostały wygenerowane w oprogramowania FUSION (USDA Forest Service). Segmentację koron prowadzono w oprogramowaniu eCognition Developer. Oprócz modeli wysokościowych wykorzystano także informację spektralną (tzw. prawdziwe ortofotomapy CIR; GSD: 0.3 i 0.75 m). Do oceny dokładności otrzymanych wyników wykorzystano dane pochodzące z 248 powierzchni referencyjnych. Przeprowadzona analiza wykazała, że w drzewostanach młodszych klas wieku (< 120 lat), lepsze wyniki można osiągnąć stosując metody dopasowania zdjęć (CHM_IPC) natomiast w drzewostanach starszych (> 120 lat) dokładność wykrywania koron drzew jest najwyższa przy stosowaniu wariantu CHM_ALS. Średni błąd procentowy określania liczby drzew w oparciu o detekcję pojedynczych koron sosen obliczony na podstawie 248 powierzchni referencyjnych wyniósł 0.89% co świadczy o ogromnym potencjale fotogrametrii cyfrowej (metod dopasowania zdjęć) oraz analizy obrazu (OBIA; Object-Based Image Analysis). W aspekcie niemal całkowitego pokrycia kraju danymi ALS oraz blisko 70% udziału drzewostanów sosnowych w Lasach Państwowych można założyć szerokie wykorzystanie tych nieodpłatnie dostępnych geodanych w celu zbudowania modelu precyzyjnego leśnictwa dla obszaru całego kraju.
PL
Dane lotniczego skanowania laserowego (ALS) pozyskiwane są najczęściej na potrzeby budowy numerycznych modeli wysokościowych. W Polsce dane takie pozyskane zostały dla obszaru niemal całego kraju w ramach projektu ISOK, związanego z osłoną przed zagrożeniami naturalnymi. Dane te zostały wykorzystane w niniejszej pracy do modelowania obrysów budynków. W tym celu zaproponowano algorytm będący kombinacją algorytmu α-shape do detekcji konturów budynków oraz iteracyjnego ogólnego modelu wyrównawczego do aproksymacji rzutów ortogonalnych ścian budynków. Identyfikację punktów reprezentujących obrysy budynków wykonano na podstawie chmury punktów, z której odrzucono punkty powyżej zadanej wysokości progowej. Identyfikacja obrysów budynków jako otoczki pustych powierzchni reprezentujących budynki dokładniej przybliża rzeczywiste położenie przyziemi ścian budynków. Do weryfikacji algorytmu wykorzystano chmurę punktów o gęstości 12 pkt/m2 reprezentującą miejski obszar zurbanizowany o zabudowie regularnej. Wyniki modelowania 2D budynków porównano z ich reprezentacją w bazie Ewidencji Gruntów i Budynków oraz obliczono odchyłki liniowe odpowiadających sobie narożników. Otrzymano średnią wartość odchyłki liniowej na poziomie 0,56 m. Wartość ta jest zgodna z nominalną dokładnością sytuacyjną danych ALS projektu ISOK. Błąd średniokwadratowy policzony na podstawie odchyłek liniowych wynosi 0,64 m. Otrzymane wyniki modelowania spełniają wymagania dokładnościowe Bazy Danych Obiektów Topograficznych 1:10000 (BDOT10k) i mogą być wykorzystane do jej weryfikacji, aktualizacji bądź zasilania.
EN
Airborne laser scanning data (ALS) are acquired mostly for the purpose of digital elevation models generation. In Poland, ALS data have been obtained for the whole country within the ISOK project, established for natural hazards risk mitigation. These data were used in this study to model the outlines of buildings. For this purpose an algorithm is proposed, that is a combination of α-shape algorithm and iterative total least squares adjustment. α-shape is used to detect points representing building outlines while the total least squares method is performed to receive regularized 2D building vector models. Identification of points representing outlines of buildings was performed on the point cloud thresholded at the given height with rejection of points above that height. Identification of a building as a gap (internal hull) in ALS data set is a better approximation of real building shape. For the algorithm verification a point cloud with a density of 4 points /m2 is utilized. This point cloud represents a city urban area, covering 21 large buildings. The results of 2D modeling of buildings have been compared with their representation in the cadaster data base. The linear deviation between corresponding corners of modeled and represented in cadaster data base buildings have been measured. The received mean value of the deviation equal 0.56 m is consistent with the nominal planar accuracy of ISOK ALS data. RMSE of building outline modelling calculated on the basis of linear deviations was equal 0,64 m. The results of modeling meet the requirements of Topographic Database Objects 1: 10000 (BDOT10k) and can be used for verification and updating of this data base.
PL
Lotniczy skaning laserowy jest obecnie jedną z najwydajniejszych technik pozyskiwania danych o powierzchni i elementach pokrycia terenu. Dynamiczny rozwój technologii pozwolił na szersze zastosowanie systemów typu full-waveform, które rejestrują kształt całej krzywej fali powracającej do odbiornika. W celu pozyskania dodatkowych informacji o obiektach, od których nastąpiło odbicie, zapisane dyskretne wartości przybliża się za pomocą zestawu funkcji parametrycznych. Prace badawcze koncentrują się na tworzeniu algorytmów pozwalających na przeprowadzenie szybkiej dekompozycji fali przy jednoczesnym wykryciu i aproksymacji słabych oraz nakładających się ech. Większość istniejących metod dekompozycji wymaga znajomości liczby wierzchołków występujących w sygnale i określenia przybliżonych parametrów wpasowywanych krzywych. W artykule zaproponowano alternatywny algorytm będący modyfikacją metody progresywnej, który pozwala na skuteczne przeprowadzenie dekompozycji sygnału z pominięciem prac przygotowawczych. Metoda polega na iteracyjnym wpasowaniu krzywych za pomocą algorytmu Levenberga–Marquardta z zastosowaniem wagowania poszczególnych sampli. Wykorzystując dane testowe, wykonano dwuetapową walidację algorytmu. W pierwszej kolejności zbadano wielkość i rozkład błędów aproksymacji powstałych podczas dekompozycji sygnału przy zastosowaniu funkcji Gaussa. W drugim etapie porównano otrzymane wyniki z wynikami aproksymacji za pomocą standardowej procedury. Na podstawie walidacji algorytmu można stwierdzić, że umożliwia on prawidłowe wykrycie wszystkich komponentów oraz ich poprawną aproksymację przy użyciu wybranego modelu matematycznego.
EN
Airborne laser scanning is one of the most powerful techniques for acquiring information about Earth’s surface and land cover. Dynamic development of technology enabled the broader use of full-waveform’s type systems, which register the entire reflected waveform. In order to provide some additional information about the structure of the illuminated surface, discrete values should be approximated by parametric functions. Research is focused on algorithm development that would allow to carry out a rapid decomposition of the wave while detecting and approximating weak and overlapping echoes. Most of existing methods for full-waveform signal modeling requires knowledge of the number of peaks and approximate parameter values. In this paper new algorithm for signal decomposition has been investigated. It allows to carry out the decomposition effectively without preprocessing. This algorithm can be considered as a progressive algorithm modification. The method involves an iterative curve fitting using weighted Levenberg-Marquardt algorithm. Two-step validation of decomposition method has also been carried out on test data. Firstly, the quantity and distribution of approximation error have been investigated. Furthermore the results have been compared to standard procedure. Basing on algorithm validation it can be stated that the method allows proper detection of all components and their correct approximation.
PL
W planowaniu usług transportowych bardzo ważne jest optymalne zaplanowanie trasy przejazdu. Do tego typu zadań wykorzystuje się nowoczesne narzędzia IT wyposażone w aktualne dane mapowe. Istotne są także informacje dotyczące ruchu drogowego jak i dane na temat stanu dróg. Te pierwsze można pozyskiwać z systemów ITS (Intelligent Transportation System - Inteligentne Systemy Transportowe), drugie udostępniane są przez zarządcę drogi. W przypadku stanu dróg krajowych GDDKiA (Główna Dyrekcja Dróg Krajowych i Autostrad), będąca ich zarządcą, przeprowadza corocznie pomiary w ramach m.in. serwisów SOSN (System Oceny Stanu Nawierzchni) i SOPO (System Oceny Stanu Poboczy i Odwodnienia Dróg). Współpracują one z system komputerowym BDD (Bank Danych Drogowych). Dodatkowym źródłem informacji o stanie dróg mogą być dane pozyskane w technologii skaningu laserowego. W pracy opisano możliwości wykorzystania lotniczego skaningu laserowego ALS (Airborne Laser Scanning). W oparciu o chmurę punktów ALS opracowano przekroje poprzeczne zeskanowanego fragmentu pasa drogowego. Opracowano także numeryczny model terenu. Uzyskane dane mogą być dodatkowym źródłem danych do systemów wspomagających planowanie transportu.
EN
In the planning of transport services, it is important to plan the optimal route. For this type of tasks modern IT tools equipped with up to date map data have been applied. Traffic information and data on the state of the roads are also relevant. The first one can be obtained from ITS (Intelligent Transportation System), the second is provided by the manager of the road. In the case of national roads GDDKiA (Główna Dyrekcja Dróg Krajowych i Autostrad - General Directorate for National Roads and Motorways) - the manager, conducts the annual measurements as part of, among others, SOSN and SOPO services. These services cooperate with the computer system BDD (Bank Danych Drogowych - Road Data Bank). Another source of information about the state of roads can be the data collected by means of laser scanning technology. This paper describes the possibilities of using airborne laser scanning (ALS). On the basis of the ALS point cloud cross-sections of the scanned roadway have been developed. Point cloud is also a good source for digital terrain model generation. The data obtained may be an additional source of data for transport planning support systems.
EN
The structural complexity of a modern fortification, the size of the spatial area involved and the relationship with the surrounding landscape require a landscape-related approach in order to identify, evaluate and make decisions for the preservation and development of single structures and sites as a whole, as well as the defensive works. This article presents the new possibilities for landscape analysis available with the use of numerical terrain models taking the Gałachy casemated fortress artillery building in Zakroczym as an example. The landscape analysis made use of the following resources in the experiment: numerical elevation data, in the form of a cloud of points originating from airborne laser scanning (ALS), the vector data of topographic objects from the Polish geodetic and cartographic database (BDOT), cadastral type data from the Web Feature Service (WFS) geoportal. gov.pl. The results of the analysis performed support the usefulness of the new technology for visualizing the landscape of a historic fortress and allow overall conclusions to be drawn on developing new tools for studying and shaping the landscape. The practical experiments demonstrate the usefulness of applying the technology on many levels: Identifying and making an inventory of historic sites. Preparing and implementing a conservation-oriented plan for the preservation and development of an area. Educating and promoting the heritage of military architecture. Protecting sites through monitoring.
PL
Strukturalna złożoność fortyfikacji nowszej, skala przestrzenna oraz powiązanie z otaczającym krajobrazem wymagają podejścia krajobrazowego zarówno na etapie identyfikacji, waloryzacji oraz podejmowania decyzji w zakresie ochrony i zagospodarowania pojedynczych elementów i obiektów, a także, w oczywisty sposób, dzieł i zespołów obronnych. W artykule przedstawiono nowe możliwości analiz krajobrazowych jakie niesie ze sobą wykorzystanie modeli numerycznych terenu na przykładzie obszaru dzieła obronnego skazamatowanej budowli artylerii fortecznej „Gałachy” w Zakroczymiu. Przy sporządzaniu analiz krajobrazowych wykorzystane zostały eksperymentalnie: numeryczne dane wysokościowe, w postaci chmury punktów, pochodzące z lotniczego skanowania laserowego, wektorowa baza danych topograficznych, pochodząca z państwowego zasobu geodezyjnego i kartograficznego poziomu centralnego, dane o charakterze katastralnym, pochodzące z serwisu Web Feature Service (WFS) geoportal.gov.pl. Wyniki przeprowadzonych analiz potwierdzają przydatność nowych technologii w „czytaniu” pofortecznego krajobrazu i pozwalają na opracowanie ogólniejszych wniosków w zakresie tworzenia nowych narzędzi badania i projektowania krajobrazu. Praktyczne doświadczenia wskazują na przydatność wykorzystanych technologii na wielu poziomach, w tym: identyfikacji i inwentaryzacji zabytkowych obiektów, opracowania i wdrażania konserwatorskiej wizji ochrony i zagospodarowania obszaru, edukacji i popularyzacji dziedzictwa architektury militarnej, ochrony poprzez monitorowanie.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.