Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  aerialtriangulation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przeanalizowano możliwości pozyskiwania zdjęć za pomocą amatorskiej, niemetrycznej kamery zamontowanej na pokładzie miniaturowego bezzałogowego statku latającego. W ramach prac badawczych przeprowadzono analizę dokładności aerotriangulacji z uwzględnieniem wpływu dodatkowych parametrów na wzrost dokładności wyrównania dla dwóch testowych bloków zdjęć o nieregularnej geometrii. Do oceny dokładności pierwszego i drugiego bloku wykorzystano odpowiednio 17 i 13 niezależnych punktów kontrolnych. Fotopunktami i punktami kontrolnymi były szczegóły terenowe. W toku badań przeprowadzono sześć niezależnych wyrównań każdego z bloków. Pierwsze wyrównanie nie uwzględniało wpływu dodatkowych parametrów. Natomiast pozostałe wyrównania uwzględniały kolejno modele dodatkowych parametrów opracowane przez Bauera, Jacobsena, Ebnera, Browna oraz Model Dystorsji Obiektywu. Na podstawie przeprowadzonych badań wpływu dodatkowych parametrów na dokładności aerotriangulacji stwierdzono, że poprawne wyrównanie testowanych bloków wymaga zastosowania większej liczby fotopunktów niż w przypadku opracowania tradycyjnych zdjęć lotniczych. Ponadto, uwzględnienie w wyrównaniu dodatkowych parametrów może w zauważalny sposób zwiększyć dokładność wyznaczenia współrzędnych punktów. W stosunku do wyników wyrównania przeprowadzonego bez uwzględniania parametrów dodatkowych, wyrównanie z zastosowaniem Modelu Dystorsji Obiektywu pozwoliło na podwyższenie dokładności aerotriangulacji o 56% i 31% odpowiednio dla pierwszego i drugiego bloku. Wykorzystanie Modelu Ortogonalnego Ebnera w pierwszym przypadku nieznacznie podniosło dokładność wyrównania (o 9%), natomiast dla bloku drugiego zaobserwowano zmniejszenie dokładności aerotriangulacji (o 2%). Jest to spowodowane faktem, że model ten pierwotnie przeznaczony był dla opracowań zdjęć pozyskanych kamerami analogowymi.
EN
This article raises a problem of acquiring digital images form an amateur non metric camera on board an unmanned aerial vehicle. Within the research work on chosen blocks of images, an accuracy analysis of the aerialtriangulation allowing for the influence of additional parameters to increase accuracy adjustment was made. In the course of research, six independent adjustments were made. The first adjustment did not include additional parameters. The other adjustments included five additional parameters’ models: Bauer’s Simple Model, Jacobsen’s Simple Model, Ebner’s Orthogonal Model, Brown’s Physical Model and Lens Distortion Model, respectively. The legitimacy of using these additional parameters was determined by the low flight level in the range of tens of meters. The unfavourable dependence in this case is that the accuracy of the coordinates of the control points is much lower than the ground sampling distance on the images. In the course of research, an assumption was made that in the realization of these studies, in many cases the ground sampling distance is equal to or smaller than the accuracy of the coordinates of control points. On the basis of research concerning the accuracy of aerialtriangulation as well as the influence of additional parameters, it was found that correct adjustment of tested blocks required the use of a larger number of control points, when working with traditional airborne images. Moreover, the use of additional parameters adjustment can visibly increase accuracy of the determined point coordinated. Compared to the results of the alignment performed without taking into account additional parameters alignment using lens distortion model allowed us to increase the accuracy of aerial triangulation by 56% and 31% for the first and second block. However, the use of orthogonal model Ebner’a in the first case, slightly increased the accuracy of the alignment (about 9%), while the second block resulted in reduced accuracy of aerial triangulation (about 2%). This is due to the fact that this model was originally designed for studies images acquired analog cameras.
PL
Omówiono zagadnienie fotogrametrycznego opracowania zdjęć pozyskanych za pomocą amatorskiej, niemetrycznej kamery zamontowanej na pokładzie miniaturowego, bezzałogowego statku latającego (BSL). Rozpatrywanym zagadnieniem jest również zbadanie potencjału wykorzystania niskobudżetowych bezzałogowych platform latających pozbawionych systemu GPS/INS do pozyskiwania geodanych. W tym przypadku wyposażenie tego typu platformy w taki system podnosiłoby nawet kilkakrotnie koszt całego urządzenia, a dokładność wyznaczenia pozycji bezzałogowego statku kształtowałaby się na poziomie tylko kilku metrów. Celem badań było przeprowadzenie analizy dokładności aerotriangulacji zdjęć cyfrowych pozyskanych za pomocą kamery niemetrycznej zamontowanej na pokładzie bezzałogowego statku latającego. W ramach prac badawczych wykorzystano terenową osnowę fotogrametryczną, przeprowadzono kalibrację kamery niemetrycznej oraz wykonano nalot fotogrametryczny nad obszarem opracowania. Z kilkudziesięciu pozyskanych zdjęć wybrano takie, które charakteryzowały się możliwe najmniejszymi wartościami kątów nachylenia i skręcenia oraz posiadały zbliżoną skalę. W dalszych badaniach skupiono się na analizie dokładności aerotriangulacji na wybranym bloku testowym bez uwzględniania danych nawigacyjnych oraz, dla porównania, z uwzględnieniem przybliżonych środków rzutów z systemu GPS. Analizy dokładności wyrównania dokonano niezależnie w dwóch programach: Leica Photogrammetry Suite oraz MATCH-AT (INPHO). Na podstawie otrzymanych wyników stwierdzono, że oprogramowanie MATCH-AT jest znacznie wydajniejszym programem do aerotriangulacji zdjęć cyfrowych pozyskanych kamerą cyfrową z pokładu BSL od oprogramowania Leica Photogrammetry Suite. Dzięki dużej liczbie poprawnie wygenerowanych punktów wiążących możliwe było wzmocnienie sieci wiązań w czasie wyrównania. Udowodniono również, że możliwe jest otrzymanie zadowalających wyników wyrównania bez uwzględniania danych z tanich sensorów nawigacyjnych o niskiej dokładności, które w kontekście aerotriangulacji w żaden sposób nie poprawiły dokładności wyrównania.
EN
This paper addresses the problem of developing photogrammetric images acquired by an amateur, non-metric camera mounted on the UAV. Another issue under consideration is also exploring the potential use of low-cost unmanned platforms without a GPS/INS to obtain geospatial data. In the presented case, the use of this type of equipment on the UAV system would raise the cost of the device even several times, whilst the precision of the UAV’s position would be within a few meters. The aim of this study was to analyze the accuracy of aerial triangulation of digital images obtained using non-metric cameras mounted on board of the UAV. Ground control points, independent check points, the UAV system and calibrated digital camera have been used for aerial triangulation. With dozens of acquired images those that were characterized by the lowest possible values of the yaw, pitch and roll angles and those having a similar scale were selected. Further studies focused on the analysis of the aerial triangulation accuracy test on a selected block. Adjustment accuracy analysis was performed independently in two softwares: the Leica Photogrammetry Suite and MATCH-AT (INPHO). Based on the obtained results, the MATCH-AT software is much more efficient software for aerial triangulation of digital images obtained with a digital camera from UAV, compared to the Leica Photogrammetry Suite modules. Due to a large number of well generated tie points, the block geometry was strengthened which allow us to obtain good results. It was found that it is possible to obtain satisfactory results without the use of additional navigation data from low-cost sensors with low accuracy.
PL
Przedstawiono wyniki badań skuteczności dodatkowych parametrów w aerotriangulacji na przykładzie bloków opracowanych w kraju, w kilku ostatnich latach. Zamieszczono wyniki badania 20 bloków podzielonych na cztery grupy, różniące się skalą zdjęć, liczbą zdjęć w bloku oraz występowaniem pomiaru środków rzutu. Pierwsza grupa zwierała 8 bloków, które opracowano dla map rzek ze zdjęć o skali 1:26 000. Bloki miały nieregularny kształt granic z wieloma załamaniami. Liczba zdjęć w blokach wynosiła od 50 do 133. Druga grupa zawierała 4 bloki opracowane dla numerycznego modelu terenu i ortofotomap ze zdjęć w skali 1:26 000. Bloki miały kształt prostokątny. Liczba zdjęć wynosiła od 384 do 1 077. Trzecia grupa zawierała 5 bloków, które opracowano dla numerycznego modelu terenu i ortofotomap ze zdjęć w skali 1:13 000. Bloki miały kształt prostokątny. Liczba zdjęć w bloku wynosiła od 888 do 2 263. Czwarta grupa zawierała 4 bloki opracowane dla map drogowych ze zdjęć w dużych skalach. Liczba zdjęć w bloku wynosiła od 93 do 241. Kształt bloków był nieregularny. Bloki w grupach trzeciej i czwartej miały pomiar środków rzutu metodą GPS. Liczba punktów kontrolnych w bloku wynosiła od 20 do 54. Punktami kontrolnymi i fotopunktami były szczegóły terenowe. Bloki wyrównano dwukrotnie: bez dodatkowych parametrów i z nimi. Bloki wyrównano programem BINGO, który ma funkcję zawierającą 24 parametry. Skuteczność dodatkowych parametrów pokazano jako wzrost dokładności uzyskanej dla punktów kontrolnych, w odniesieniu do dokładności otrzymanej w wyrównaniu bez dodatkowych parametrów. Dla 15 bloków dokładność wzrosła od 1 % do 70 %. Dla 5 bloków zmniejszyła się od 6 % do 16 %. Obniżenie dokładności powstało na skutek nieregularnego kształtu bloków lub nietypowej sieci fotopunktów.
EN
This article presents the results of studies related to the efficiency of applying additional parameters in aerotriangulation, using study blocks prepared in Poland in recent years. The results of the study of 20 blocks are included and are divided into four groups, differing in photo scale, number of photographs within a block and appearance of the measured projection center. The first group consisted of 8 blocks which were prepared for river maps from 1:26 000 scale photographs. The blocks had very irregular border shapes with many corners. The number of photographs in blocks was from 50 to 133. The second group consisted of 4 blocks which were prepared for digital terrain models and for orthophotomaps from 1: 26 000 scale photographs. The blocks had a rectangular shape. The number of photographs in the blocks was from 384 to 1 077. The third group consisted of 5 blocks which were prepared for digital terrain models and for orthophotomaps from 1: 13 000 scale photographs. The blocks had a rectangular shape. The number of photographs in the blocks was from 888 to 2 263. The fourth group consisted of 3 blocks which were prepared for road maps from large scale photographs. The number of photographs in the blocks was from 93 to 241. The shape of blocks was irregular. The blocks in the third and fourth group had projection centers measured by GPS. The number of check points in the blocks was from 20 to 54. The control points and check points were terrain features. The blocks were adjusted twice: both with and without additional parameters. Adjustments were prepared by BINGO software, which has functions consisting of 24 parameters. The efficiency of additional parameters was demonstrated as an increase of accuracy obtained for check points, in reference to the accuracy achieved in adjustment without additional parameters. The accuracy was increased for 15 blocks from 1 % to 70 %. For 5 blocks, it was reduced from 6 % to 16 %. The accuracy decrease appeared as a result of irregular block shape or an untypical net of control points.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.