Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  aerial image classification
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Aerial images are valuable for observing land, allowing detailed examination of Earth’s surface features. As remote sensing (RS) imagery becomes more abundant, there is a growing need to fully utilize these images for smarter Earth observation. Understanding large and complex RS images is crucial. Satellite image scenery categorization, which involves labeling images based on their content, has diverse applications. Deep Learning (DL), using neural networks’ powerful attribute learning capabilities, has made significant strides in categorizing satellite imagery scenes. However, recent advances in DL for scenery categorization of RS images are lacking. In our study, we employed three transfer learning(TL) models - VGG16, Densenet201 (D-201), and InceptionV3 (IV3) - for classifying aerial images.VGG16 achieved 94% accuracy, while D-201 and IV3 reached 97% accuracy. Combining these models into an ensemble (V3DI ensemble model) improved accuracy to an impressive 99%. This ensemble model combines individual models’ classification decisions using majority voting. We demonstrate the efficiency of this approach by showing how ensemble classification accuracy surpasses that of training individual models. Additionally, we preprocess the dataset with a Gabor filter for edge enhancement and denoising to enhance the model’s overall performance.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.