Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  advanced data validation and reconciliation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
There are advantages to be gained by using a generalized method of data validation and reconciliation in energy conversion processes in terms of decreasing the uncertainty of measurements data. This method was used to complete the validation model of the process (conditional equations of optimization task) including substance and energy conservation principles with additional equations describing energy conversion processes. The methodology developed was used for example for calculations of data reconciliation in the selected steam power unit. The equations of steam flow capacity, adiabatic internal efficiency and equations resulting from the form of an isobaric line on the h-s diagram for a group of turbine stages were applied. Also applied as additional equations in the validation model were: Darcy’s equation of steam pressure drop in the pipeline into heat exchangers and Peclet’s equations of heat transfer and equations of over-cooling of condensate in regenerative heat exchangers. The criterion of an assessment of the decrease of measurements uncertainty in the form of global decrease of measurements variance after measurement data reconciliation is proposed. Derivation of the analyzed coefficient was based on the characteristic property of the measurements variance, coming from the variance-covariance matrix of measurements before and after data reconciliation. The criterion for selection of the mathematical form of additional equations in the validation model in reconciliation calculation was formulated. Professor Jan Szargut introduced and developed the advanced data validation and reconciliation method in Poland for thermodynamic analysis of energy conversion processes. The author of this paper engaged in further research on the development and application of this method in thermodynamic analyses.
PL
W artykule zaprezentowano wybrane zagadnienia związane z modelowaniem matematycznym procesu wielkopiecowego służącym do oceny ilościowych efektów energetycznych stosowania w wielkim piecu różnych czynników paliwowo-redukcyjnych. Przedmiotem rozważań jest teoretyczno-empiryczny model matematyczny procesu, oparty na bilansowaniu wydzielonych stref temperaturowych wielkiego pieca. Przedstawiono zastosowanie metody zaawansowanej walidacji danych pomiarowych do wyeliminowania niezgodności wybranych bilansów substancji i energii stref temperaturowych wielkiego pieca dla tzw. bazowego pomiaru jego wskaźników surowcowych i energetycznych w ustalonym stanie pracy. Zastosowana metoda zaawansowanej walidacji danych pomiarowych umożliwia uwiarygodnienie wartości wielkości zakładanych jako niezmienne w obliczeniach symulacyjnych z użyciem modelu oraz na obliczenie wiarygodnych wartości współczynników empirycznych w wybranych zależnościach modelu matematycznego.
EN
The article presents selected issues related to mathematical modelling of the blast furnace process used to assess the quantitative energy effects of using various fuel-reduction mediums in the blast furnace. The subject of the discussion is the theoretical-empirical mathematical model of the process based on balancing separated temperature zones of the blast furnace. The application of the advanced measurement data validation and reconciliation method to eliminate incompatibilities of selected balances of mass and energy of the temperature zones of the blast furnace for the so-called basic measurement of its raw materials and energy indicators in the steady-state of operation. The applied method of advanced data validation and reconciliation makes it possible to improve the reliability of values assumed as constant in simulation calculations using the mathematical model and to calculate reliable values of empirical coefficients in selected dependencies of the model.
PL
System pomiarowy procesu energetycznego traktuje się jako redundantny, jeśli spełnia on warunki zastosowania zaawansowanej walidacji i uwiarygodnienia pomiarów – metody rachunku wyrównawczego. Na etapie projektowania takiego systemu pojawia się, z punktu widzenia metody optymalizacji, zarówno problem liczby nadmiarowych pomiarów jak również ich lokalizacji w systemie pomiarowym procesu. Nadrzędne rozwiązywane zadanie optymalizacyjne należy w tym przypadku do problemów optymalizacji kombinatorycznej. Zadania te należą do trudnych z obliczeniowego punktu widzenia. Dla współczesnej szybkości obliczeniowej komputerów i dla większych wymiarowo zadań może to być istotnie utrudnione, ponieważ czas obliczeń odpowiedniego algorytmu komputerowego jest funkcją wykładniczą wymiaru rozwiązywanego problemu. Przeprowadzono obliczenia optymalizacji lokalizacji pomiarów dla symulowanego redundantnego systemu pomiarowego przykładowego bloku ciepłowniczego gazowo-parowego. W obliczeniach zaawansowanej walidacji i uwiarygodnienia pomiarów zastosowano tzw. uogólnioną metodę rachunku wyrównawczego polegającą na przypisaniu wielkości niemierzonej w systemie pomiarowym statusu tzw. pseudo-pomiaru, czyli wielkości szacowanej ze skończoną wartością niepewności tego oszacowania. Jako funkcję celu zadania optymalizacji kombinatorycznej przyjęto względną niepewność stopnia wykorzystania energii chemicznej paliwa w bloku. Do oceny redundantnego systemu pomiarowego traktowanego całościowo wykorzystano względną entropię informacji – dywergencję Kullbacka-Leiblera. Obliczenia optymalizacyjne przeprowadzono dla wszystkich elementów przestrzeni stanów, tzn. obliczono wartości przyjętej funkcji celu dla wszystkich możliwych konfiguracji lokalizacji rozpatrywanych pomiarów nadmiarowych dla zadanej ich liczby. Przeprowadzono dyskusję otrzymanych wyników ze względu na możliwości ograniczenia wymiarowości rozwiązywanego zadania optymalizacji kombinatorycznej i w związku z tym znaczącym skróceniem czasu obliczeń numerycznych.
EN
The measurements system in an energy technology process is treated as a redundant, if it fulfills the conditions for the application of the advanced data validation and reconciliation. At the design stage of such a system, the problem of the number of redundant measurements as well as their location appears from the point of view of the optimization method. In this case, the solved superior optimization problem is the problem of the combinatorial optimization. These tasks are difficult from a computational point of view. For contemporary computers this may become impossible for larger-scale tasks, because the computing time of the corresponding algorithm is an exponential function from the problem dimension to the solution. Example calculations for the redundant measurement system of a selected gas-and-steam CHP unit have been carried-out. As an objective function of the combinatorial optimization task, the relative uncertainty of the energy utilization factor was assumed. To evaluate the redundant measurements system as a whole the relative information entropy – Kullback-Leibler divergence has been accepted. The optimization calculations for all state space elements, i.e. for all possible location configurations of the redundant measurements in the system have been preformed. Discussion of the received results due to the possibility of limiting the dimensionality of the solved optimization combinatorial task and consequently the significant reduction of the numerical calculation time has been carried out.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.