We explore lattice theoretic aspects in rough set theory in terms of the duality between algebra and representation. Approximation spaces are dual to complete atomic Boolean algebras in the sense that there is an adjunction between corresponding suitable categories. This is an analogy with the adjunction between the category of topological spaces and the opposite of the category of frames in pointless topology. In this paper we consider a generalization of approximation spaces called double approximation systems. A double approximation system consists of a set and two equivalence relations on it. We construct an adjunction generalizing this concept for approximation spaces. To achieve this goal, we first introduce a natural generalization of complete atomic Boolean algebras called complete prime lattices. Then we select double approximation systems that can be dual to complete prime lattices and prove the adjunction.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Mathematical morphology is a geometric approach in image processing and analysis with a strong mathematical flavor. Originally, it was developed as a powerful tool for shape analysis in binary and, later, grey-scale images. But it was soon recognized that the underlying ideas could be extended naturally to a much wider class of mathematical objects, namely complete lattices. This paper presents, in a bird's eye view, the foundations of mathematical morphology, or more precisely, the theory of morphological operators on complete lattices.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.