Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  adhesive categories
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Adhesivity with Partial Maps instead of Spans
EN
The introduction of adhesive categories revived interest in the study of properties of pushouts with respect to pullbacks that started over thirty years ago for the category of graphs. Adhesive categories - of which graphs are the 'archetypal' example - are defined by a single property of pushouts along monos that implies essential lemmas and central theorems of double pushout rewriting such as the local Church-Rosser Theorem. The present paper shows that a strictly weaker condition on pushouts suffices to obtain essentially the same results: it suffices to require pushouts to be hereditary, i.e. they have to remain pushouts when they are embedded into the associated category of partial maps. This fact however is not the only reason to introduce partial map adhesive categories as categories with pushouts along monos (of a certain stable class) that are hereditary. There are two equally important motivations: first, there is an application relevant example category that cannot be captured by the more established variations of adhesive categories; second, partial map adhesive categories are 'conceptually similar' to adhesive categories as the latter can be characterized as those categories with pushout along monos that remain bi-pushouts when they are embedded into the associated bi-category of spans. Thus, adhesivity with partial maps instead of spans appears to be a natural candidate for a general rewriting framework.
EN
Adhesive high-level replacement (HLR) systems are introduced as a new categorical framework for graph transformation in the double pushout (DPO) approach, which combines the well-known concept of HLR systems with the new concept of adhesive categories introduced by Lack and Sobociński. In this paper we show that most of the HLR properties, which had been introduced to generalize some basic results from the category of graphs to high-level structures, are valid already in adhesive HLR categories. This leads to a smooth categorical theory of HLR systems which can be applied to a large variety of graphs and other visual models. As a main new result in a categorical framework we show the Critical Pair Lemma for the local confluence of transformations. Moreover we present a new version of embeddings and extensions for transformations in our framework of adhesive HLR systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.