Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  adenosine
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Czy za snem kryje się chemia?
PL
Sen ma fundamentalne znaczenie dla emocjonalnego i fizycznego zdrowia człowieka. Jego nieodpowiednia ilość jest znanym czynnikiem ryzyka zachorowania na otyłość, cukrzycę, choroby serca oraz depresję. Dorosły człowiek poświęca mu około jednej trzeciej swojego życia. Jednak skąd organizm wie, kiedy powinien zapaść w sen? Badania pokazują, że wiele części mózgu bierze udział w procesach produkcji hormonów i substancji chemicznych, które regulują zarówno sen jak i czuwanie. W niniejszym artykule opisano wpływ rytmu dobowego, melatoniny, adenozyny, neuroprzekaźnika GABA oraz kofeiny na ten stan fizjologiczny.
EN
Sleep is fundamental to a person's emotional and physical health. Its insufficient quantity is a known risk factor for obesity, diabetes, heart disease and depression. An adult devotes about one-third of his or her life to it. However, how does the body know when it should fall asleep? Research shows that many parts of the brain are involved in the production of hormones and chemicals that regulate both sleep and wakefulness. This article describes the effects of diurnal rhythm, melatonin, adenosine, the neurotransmitter GABA, and caffeine on this physiological state.
EN
In order to assess the contribution of adenosine triphosphate and its metabolites to the cellular metabolism process in Saccharomyces cerevisiae, it is very important to simultaneously determine the relative concentrations of ATP and its metabolites. In this study, a fast, simple reversed-phase high-performance liquid chromatography with high selectivity was developed to simultaneously measure adenosine triphosphate and its metabolites (adenosine diphosphate, adenosine monophosphate, and cyclic adenosine monophosphate) in yeast. The method was performed under the gradient grogram, and the detection was monitored at 254 nm. Analysis was achieved within 25 min. The four components can be detected with linear response over the concentration range from 1 to 100 mg L−1 with excellent correlation coefficients (r2) > 0.999. The recovery of the four analytes was 92.9%, 90.4%, 99.1%, and 105.1%, respectively. To demonstrate the good analysis of yeast samples, changes in the four adenine nucleotides levels caused by caloric restriction in yeast were determined. It is expected that the current method may contribute to further metabolomics and system biology investigations of yeast.
3
Content available Synteza analogów adenozyny
EN
Adenosine (Rys. 1) is a purine nucleoside playing an important role in human body. It is involved in key pathways such as purinergic nucleic acid base synthesis, amino acid metabolism and modulation of cellular metabolic status [1,2]. Adenosine acts through the four types of adenosine receptors: A1, A2A, A2B and A3 belonging to the G protein-coupled receptor family [3]. In physiological conditions this nucleoside is present in a micromolar range [5]. However, when metabolic stress occurs extracellular level of adenosine raises revealing its protective properties. Depending on an activated receptor subtype, adenosine demonstrates cardioprotective and neuroprotective activity during hypoxia or ischemia, it stimulates the immunological system [6, 7]. Besides many potential applications, adenosine is used mainly for the treatment of paroxysmal supraventricular tachycardia. Limitations are linked to a very short blood half-time and no receptor specificity [8]. This review is focused on novel literature data about synthesis of adenosine analogues with interesting biological activities. In order to influence adenosine receptor selectivity and pharmacokinetic properties a nucleoside structure can be modified in purine [14, 15, 17, 22, 26, 27, 35] or sugar ring [29, 32]. New interesting compounds are also synthesized by cyclisation of adenosine [36]. Modification of adenosine structure allowed obtaining compounds with targeted action: antiarrhythmic [11, 12], antinociceptive [9], antilipolytic [13], antiviral [29] or anticancer [35].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.