Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  adaptacja domeny
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An insufficient number or lack of training samples is a bottleneck in traditional machine learning and object recognition. Recently, unsupervised domain adaptation has been proposed and then widely applied for cross-domain object recognition, which can utilize the labeled samples from a source domain to improve the classification performance in a target domain where no labeled sample is available. The two domains have the same feature and label spaces but different distributions. Most existing approaches aim to learn new representations of samples in source and target domains by reducing the distribution discrepancy between domains while maximizing the covariance of all samples. However, they ignore subspace discrimination, which is essential for classification. Recently, some approaches have incorporated discriminative information of source samples, but the learned space tends to be overfitted on these samples, because they do not consider the structure information of target samples. Therefore, we propose a feature reduction approach to learn robust transfer features for reducing the distribution discrepancy between domains and preserving discriminative information of the source domain and the local structure of the target domain. Experimental results on several well-known cross-domain datasets show that the proposed method outperforms state-of-the-art techniques in most cases.
EN
Breast cancer has high incidence rate compared to the other cancers among women. This disease leads to die if it does not diagnosis early. Fortunately, by means of modern imaging procedure such as MRI, mammography, thermography, etc., and computer systems, it is possible to diagnose all kind of breast cancers in a short time. One type of BC images is histology images. They are obtained from the entire cut-off texture by use of digital cameras and contain invaluable information to diagnose malignant and benign lesions. Recently by requesting to use the digital workflow in surgical pathology, the diagnosis based on whole slide microscopy image analysis has attracted the attention of many researchers in medical image processing. Computer aided diagnosis (CAD) systems are developed to help pathologist make a better decision. There are some weaknesses in histology images based CAD systems in compared with radiology images based CAD systems. As these images are collected in different laboratory stages and from different samples, they have different distributions leading to mismatch of training (source) domain and test (target) domain. On the other hand, there is the great similarity between images of benign tumors with those of malignant. So if these images are analyzed undiscriminating, this leads to decrease classifier performance and recognition rate. In this research, a new representation learning-based unsupervised domain adaptation method is proposed to overcome these problems. This method attempts to distinguish benign extracted feature vectors from those of malignant ones by learning a domain invariant space as much as possible. This method achieved the average classification rate of 88.5% on BreaKHis dataset and increased 5.1% classification rate compared with basic methods and 1.25% with state-of-art methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.