Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ad-hoc network
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The multicasting technique supports a variety of applications that require data to be instantaneously transmitted to a set of destination nodes. In environments with continuously moving nodes, such as mobile ad-hoc networks, the search for efficient routes from sources to the projected destinations is a common issue. Proposed Windmill protocol provides a scalable multicast solution for mobile ad-hoc networks. Windmill aims to improve routing protocol’s performance by introducing a hierarchal distributed routing algorithm and dividing the area into zones. Additionally, it attempts to demonstrate better scalability, performance and robustness when faced with frequent topology changes, by utilizing restricted directional flooding. A detailed and extensive simulated performance evaluation has been conducted to assess Windmill and compare it with multicast ad-hoc on-demand distance vector (MAODV) and on-demand multicast routing protocols (ODMRP). Simulation results show that the three protocols achieved high packet delivery rates in most scenarios. Results also show that Windmill is capable of achieving scalability by maintaining the minimum packet routing load, even upon increasing the nodes’ speed, the number of sources, the number of group members and the size of the simulated network. The results also indicate that it offers superior performance and is well suited for ad-hoc wireless networks with mobile hosts. The trade-off of using Windmill consists in slightly longer paths – a characteristic that makes it a good choice for applications that require simultaneous data transmission to a large set of nodes.
EN
This paper presents developments in the area of brain-inspired wireless communications relied upon in dense wireless networks. Classic approaches to network design are complemented, firstly, by the neuroplasticity feature enabling to add the learning ability to the network. Secondly, the microglia ability enabling to repair a network with damaged neurons is considered. When combined, these two functionalities guarantee a certain level of fault-tolerance and self-repair of the network. This work is inspired primarily by observations of extremely energy efficient functions of the brain, and of the role that microglia cells play in the active immune defense system. The concept is verified by computer simulations, where messages are transferred through a dense wireless network based on the assumption of minimized energy consumption. Simulation encompasses three different network topologies which show the impact that the location of microglia nodes and their quantity exerts on network performance. Based on the results achieved, some algorithm improvements and potential future work directions have been identified.
EN
In preparation for the upcoming home delivery services that rely on Unmanned Aerial Vehicles (UAVs), we developed a new multi-hop radio network that is laid over a smart meter network transferring electric energy information only. In this network, a UAV follows, for navigation purposes, the topology of a virtual network overlaid on the physical smart meter network. We established a service management control method which does not rely on image analysis or map information processing, i.e. processes that consume precious power resources of the UAV. Instead, navigation is based on the routing technology. The current distance between the UAV and a node of the smart meter network is measured by means of the radio transmission loss value, therefore determining the position of the UAV. A two-layer network model has been proposed. One layer consists of a network of nodes in a residential area with scattered buildings – a location that is safer to navigate – while the other is an access network of nodes in a densely populated area. Then, we proposed methods to determine the direction of movement towards the next hop node on the data-link layer and the end node on the network layer, which is the target destination. We implemented a software-based test system and verified the effectiveness of the proposed methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.