Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  acoustic features
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Acoustic features of speech are promising as objective markers for mental health monitoring. Specialized smartphone apps can gather such acoustic data without disrupting the daily activities of patients. Nonetheless, the psychiatric assessment of the patient’s mental state is typically a sporadic occurrence that takes place every few months. Consequently, only a slight fraction of the acoustic data is labeled and applicable for supervised learning. The majority of the related work on mental health monitoring limits the considerations only to labeled data using a predefined ground-truth period. On the other hand, semi-supervised methods make it possible to utilize the entire dataset, exploiting the regularities in the unlabeled portion of the data to improve the predictive power of a model. To assess the applicability of semi-supervised learning approaches, we discuss selected state-of-the-art semi-supervised classifiers, namely, label spreading, label propagation, a semi-supervised support vector machine, and the self training classifier. We use real-world data obtained from a bipolar disorder patient to compare the performance of the different methods with that of baseline supervised learning methods. The experiment shows that semi-supervised learning algorithms can outperform supervised algorithms in predicting bipolar disorder episodes.
EN
Automatic voice condition analysis systems have been developed to automatically discriminate pathological voices from healthy ones in the context of two disorders related to exudative lesions of Reinke’s space: nodules and Reinke’s edema. The systems are based on acoustic features, extracted from sustained vowel recordings. Reduced subsets of features have been obtained from a larger set by a feature selection algorithm based on Whale Optimization in combination with Support Vector Machine classification. Robustness of the proposed systems is assessed by adding noise of two different types (synthetic white noise and actual noise recorded in a clinical environment) to corrupt the speech signals. Two speech databases were used for this investigation: the Massachusetts Eye and Ear Infirmary (MEEI) database and a second one specifically collected in Hospital San Pedro de Alcántara (Cáceres, Spain) for the scope of this work (UEX-Voice database). The results show that the prediction performance of the detection systems appreciably decrease when moving from MEEI to a database recorded in more realistic conditions. For both pathologies, the prediction performance declines under noisy conditions, being the effect of white noise more pronounced than the effect of noise recorded in the clinical environment.
EN
This paper proposes a comprehensive study on machine listening for localisation of snore sound excitation. Here we investigate the effects of varied frame sizes, and overlap of the analysed audio chunk for extracting low-level descriptors. In addition, we explore the performance of each kind of feature when it is fed into varied classifier models, including support vector machines, k-nearest neighbours, linear discriminant analysis, random forests, extreme learning machines, kernel-based extreme learning machines, multilayer perceptrons, and deep neural networks. Experimental results demonstrate that, wavelet packet transform energy can outperform most other features. A deep neural network trained with subband Energy ratios reaches the highest performance achieving an unweighted average recall of 72.8% from four types for snoring.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.