Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 44

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  acid mine drainage
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
EN
Acid mine drainage (AMD) is one of the main causes of environmental threats resulting from mining activities, yet efficient characterization and prediction of AMD potential of wastes play an important role in preventing AMD. In this study, the chemical and mineralogical properties of fresh waste samples, collected from waste ponds of the Görgü (Malatya) zinc-lead ore processing plant, were determined and the results were used to explain its AMD potential. Alteration properties of the wastes in water was investigated by monitoring certain properties of the prepared suspension with respect time. Additionally, pyrite concentrate particles were added into the suspensions at certain proportions to evaluate its effect on the AMD generation and alteration. Analysis and test results showed that the raw waste was rich in carbonate and poor in pyritic sulfur, and hence did not have the AMD generation potential. The pH, electrical conductivity, and metal ions concentrations of the suspension medium were determined at regular intervals, and obtained data were found very beneficial to explain the time-dependent behavior of waste in water. After the depletion of liquid in the suspension, the remained solid residuals were chemically and mineralogically analyzed to compare with raw waste. It was concluded that sufficient aeration and stirring of suspension is required for noticeable alteration of the waste.
EN
The possibilities of simultaneous removal of sulfates and heavy metals (Cu, Ni, Zn) from acid mine drainage have been investigated in two-section bioelectrochemical system (BES). The used BES is based on the microbial sulfate reduction (MSR) process in the anode zone and abiotic reduction processes in the cathodic zone. In the present study, the model acid mine drainage with high sulfate (around 4.5 g/l) and heavy metals (Cu2+, Ni2+ and Zn2+) content was performed. As a separator in the laboratory, BES used an anionic exchange membrane (AEM), and for electron donor in the process of microbial sulfate reduction in the bioanode zone – waste ethanol stillage from the distillery industry was employed. In this study, the possibility of sulfates removal from the cathodic zone was established by their forced migration through AEM to the anode zone. Simultaneously, as a result of the MSR process, the sulfate ions passed through AEM are reduced to H2S in the anode zone. The produced H2S, having its role as a mediator in electron transfer, is oxidized on the anode surface to S0 and other forms of sulfur. The applicability of waste ethanol stillage as a cheap and affordable organic substrate for the MSR process has also been established. Heavy metals (Cu2+, Ni2+ and Zn2+) occur in the cathode chamber of BES in different degrees of the removal. As a microbial fuel cell (MFC) operating for 120 hours, the reduction rate of Cu2+ reaches 94.6% (in waste ethanol stillage) and 98.6% (in the case of Postgate culture medium). On the other hand, in terms of Ni2+ and Zn2+, no significant decrease in their concentrations in the liquid phase is found. In the case of microbial electrolysis cell (MEC) mode reduction of Cu2+– 99.9%, Ni2+– 65.9% and Zn2+– 64.0% was achieved. For 96 hours, the removal of sulfates in MEC mode reached 69.9% in comparison with MFC mode – 35.2%.
EN
As one of the world’s coal producers, Indonesia continues to increase its coal production. The purpose of this study is to identify and analyze the characteristics of coal that has the potential to produce acid mine drainage. The research method is coal mapping and zoning based on formation, observation, and description of coal characteristics, coal sampling, ultimate and proximate testing, and analysis. The results of the study describe the characteristics of coal related to distribution in the early stages of evaluating the potential for acid mine formation, besides that it can be used as a basis for classifying the potential for acid mine drainage which has a high enough total sulfur based on the results of testing on 15 samples. To prevent the reaction to acid mine drainage, it can be based on the geochemical characteristics of coal by constructing a mine reservoir or making water drainage in a mine that is not close to the stockpile, because there is a possibility that water has the potential to form acid mine drainage (AMD) when it comes in contact with coal potential. So that coal does not have the potential to be a source of acid mine drainage.
PL
Zrównoważona gospodarka surowcami stanowi obecnie największe wyzwanie, w kontekście utrzymania i wprowadzania nowych technologii użytku codziennego. Stale rosnące zapotrzebowanie, a jednocześnie wyczerpywanie naturalnych zasobów wielu różnych pierwiastków, przyczynia się do coraz częściej obserwowanych kryzysów na globalnym rynku surowcowym. Obecnie najczęściej stosowanym rozwiązaniem jest recykling odpadów, w celu odzysku surowców wtórnych, możliwych do ponownego wprowadzenia do obiegu materiałowego. Niemniej jednak korzystną alternatywę może stanowić także pozyskiwanie surowców z polimetalicznych wód kopalnianych, występujących w środowisku naturalnym na terenach powydobywczych. W nawiązaniu do zasad gospodarki obiegu zamkniętego oraz założeń transformacji klimatycznej, dokonano analizy potencjału kwaśnych wód kopalnianych (AMD), jako alternatywnego źródła metali krytycznych i strategicznych dla światowej gospodarki. Wykazano, że tego typu zasoby mogą być efektywnie zagospodarowane poprzez odzysk metali Co, Cu, Li, Ni i Zn w nich zawartych, przy zastosowaniu metod biologicznych - fikoremediacji. Do tego celu po raz pierwszy w literaturze przedmiotu wykorzystano ekstremofilne mikroglony czerwone - Cyanidioschyzon merolae i Galdieria sulphuraria.
EN
Sustainable raw materials management is currently the greatest challenge in the context of maintaining and introducing new technologies for everyday use. The constantly growing demand and, at the same time, the depletion of natural resources of many different elements contribute to increasingly observed crises on the global raw material market. Currently, the most frequently used solution is waste recycling in order to recover secondary raw materials that can be reintroduced into the material cycle. However, obtaining raw materials from polymetallic mine waters occurring in the natural environment in post-mining areas may also be a beneficial alternative. Referring to the principles of the circular economy and the assumptions of climate transformation, the potential of acid mine waters (AMD) as an alternative source of critical and strategic metals for world economy was analyzed. It has been shown that this type of resources can be effectively utilized by recovering the metals Co, Cu, Li, Ni and Zn contained in them using biological methods - phycoremediation. For this purpose, for the first time in the literature, extremopnhilic red microalgae - Cyanidioschyzon merolae and Galdieria sulphuraria - were used.
EN
The efficacy of Ca2+-rich MgO nanoparticles for the effective treatment of real acid mine drainage (AMD) was evaluated. The optimized parameters include the feedstock dosage and contact time. The experimental results were underpinned using state-of-the-art analytical techniques and instruments such as FTIR, HR-FIB/SEM, EDS, XRF, and XRD. The pH REDOX equilibrium (in C language) (PHREEQC) model was also employed to complement experimental results. Optimum conditions were observed to be 45–60 min of mixing time, ≥10 000 mg/dm3 of feedstock dosage, i.e., Ca2+-rich MgO nanoparticles, and ambient temperature and pH. The metal content (Fe3+, Mn2+, Cr2+, Cu2+, Ni2+, Pb2+, Al3+, and Zn2+) embedded in AMD matrices was practically removed (≥99% removal efficacies) whilst the sulfate was also attenuated humongous (≥40%). The PHREEQC predicted metals to exist as multi-valent including carbonates and other chemical complexes. Chemical species in real AMD were predicted to precipitate as metals hydroxides, (oxy)-hydroxides, carbonates, and (oxy)-hydro-sulfates. Henceforth, the use of Ca2+-rich MgO nanoparticles was proved to be effective in the treatment of AMD from coal mining activities. However, a polishing technology will be required to further remove residual sulfates. This could be pursued to recover sulfate in valuable form and then reclaim drinking water for domestic purposes or other defined uses (end-use). This will then be the most effective closed-loop approach in the management of AMD under the circular economy (CE) concept.
EN
Acid mine drainage (AMD) threats the soils and water bodies in the territories of the sulfide mining activities all over the world. Bouaazza’s mine (NE Morocco) lead and sulfides exploitation resulted in the surface exposure of large superficies of acid discharges. The results of physicochemical and geochemical analysis indicate an acidic pH (3.0–7.0) of water samples, with concentrations of lead exceeding Moroccan standards (50 μg/L). The pH in soils is considered from slight up to moderate acidic (< 6.5), with low limestone content (< 6% of CaCO3), and high lead and zinc values exceeding international standards (300 mg/kg). These results indicate the high health risk generated by the absence of environmental monitoring of the mining operations which threaten the water quality in the surrounding area.
EN
Acid mine drainage (AMD) has the characteristics of high heavy metal ion content and low pH. This study aimed to synthesize the CaO/Fe3O4 composite for the adsorption of iron and manganese ions from acid mine drainage. CaO was synthesized from the shells of green mussels (Perna viridis). The CaO/ Fe3O4 composites were characterized using XRD, BET surface area, SEM-EDS, and VSM. The functional groups of the composite before and after adsorption were analyzed using FTIR. The adsorption of Fe(II), Fe(III), and Mn(II) ions was carried out with the batch method to determine the effect of pH, contact time, and initial concentration of metal ions. The CaO/ Fe3O4 composite has magnetic properties, as indicated by the saturation magnetization value of 65.49 emu/g. The Langmuir and Freundlich isotherm models were used to describe the adsorption isotherm of the composite for Fe(II), Fe(III), and Mn(II) ions. Investigations were also conducted on adsorption kinetics, including pseudo-first-order and pseudo-second-order, as well as adsorption thermodynamics comprising free energy, enthalpy, and entropy. Pseudo-first-order and Langmuir isotherms are suitable to describe the adsorption of Fe(II), Fe(III), and Mn(II) ions with adsorption capacities of Fe(III) > Fe(II) > Mn(II). Moreover, the adsorption of all ions using the composite occurred spontaneously. The removal effectiveness for Fe and Mn ions from AMD using CaO/ Fe3O4 composite, reached 90.41 and 97.59%, respectively, in volume 100 mL AMD, composite mass 0.4 g, and a contact time of 60 minutes.
EN
Over a long period of time, a huge amount of technogenic bottom sediments has been accumulating in the Kosva Bay with significant concentrations of amorphous iron and aluminium hydroxides, which, in turn, are active sorbents of pollutants. This study examines the distribution of trace elements and rare earth elements and their toxicity in the Kosva Bay of the Kama Reservoir (Perm Region, Russia). In the middle reach, the Kosva River crosses the Kizel coal basin, where acid mine water is discharged from closed mines. The average content of trace elements in the samples of bottom sediments of the bay varies from 0.10 mg/kg (Se) to 176.36 mg/kg (Ba). The amount of rare earth elements varies from 66.8 to 83.6 mg/kg. The ecological significance of trace elements and rare earth elements was studied using an element-by-element assessment (EF and Igeo), Potential Ecological Risk Index (RI), Mean Probable Effect Concentration Quotient (PECQ), and two bioassays (Daphnia magna Straus and Scenedesmus quadricauda (Turp.) Breb. The highest Hg enrichment was found at two sampling points. Taking into account the average value of Igeo, the pollution by Co, V, Nb, Hg, Sn, Zn, Sm, Ni, Cr, and Gd is the highest and corresponds to extremely contaminated category. The RI values indicate that pollution categories vary from moderate risk to considerable risk. According to mean PECQ values, bottom sediments of the bay have moderate potential toxicity towards biological communities. Results of chronic and acute toxicity on test objects D. magna and Scenedesmus quadricauda Breb show the water extract from bottom sediments having no effects on the test objects. The results of the study show that in order to assess the quality of bottom sediments, an integrated approach, combining chemical and ecotoxicological analyses, is needed.
EN
The successful acid mine drainage (AMD) treatment needs site-specific installation and implementation, as well as the deployment of technology that is compatible with the pollutants contained in the AMD. If key by-products of the AMD can be recovered, the financial sustainability of the AMD remediation method may be greatly improved. Additional research into novel and innovative solutions is necessary to advance in this direction. To accomplish this, it is necessary to have a complete awareness of current remediation technologies that are available and accessible. Active physical treatment methods such as ion exchange, adsorption, electrochemistry, and membrane techniques were examined in this article. Membrane technology excels in terms of ease of use, versatility, and environmental effect but produces brine streams the management of which remains vital for future adoption of the technology. Liquid membranes (LM), Micellar Enhanced Ultra-Filtration (MEUF), and Polyelectrolyte Enhanced Ultra-Filtration (PEUF) are all innovative membrane technologies that may provide some possibilities for metal recovery from chemical sludge and/or brine streams. Electrochemical technologies are considered an attractive alternative for AMD treatment, because they require only electricity as a consumable and can treat AMD to high standards by removing metals via (co)precipitation and sulfate via ionic migration (when an anion-exchange membrane is used in the configuration), while producing significantly less sludge. However, the accepted shortcomings include membrane/electrode fouling produced by (co)precipitates on the active surfaces necessary for the process, a lack of understanding regarding the effective scaling up to industrial scale, and the relatively expensive capital expenditure (CAPEX) required. The removal of heavy metals from AMD effluents by adsorption has a number of technical and environmental benefits, including high efficiency, and environmental friendliness. Despite its benefits, this technique has certain hurdles, such as the production process for low-cost adsorbents.
EN
The mining waste from the Chaabet-El-Hamra mine contains sulfides such as pyrite (FeS2), galena (PbS) and chalcopyrite (CuFeS2) Which pose a threat to the environment. Sulphide minerals under the effect of oxygen and in the presence of water cause a phenomenon of acid mine drainage. Samples taken at the site of the sulphide mine waste at the Chaabet El Hamra mine and subsequently subjected to chemical analyzes offered an average sulfur content of 9%. X-ray diffractometer analyzes confirm the presence of a considerable inclusion of pyrite containing secondary minerals of sphalerite, and galena. To do this, the tests were directed to an environmental desulphurization process by flotation of the pyriterich fraction with depression of the low sulfur mineralogical matrix containing heavy metals of zinc and lead.
EN
Plastic, especially polyethylene (PE), pipe material is increasingly used in mining applications due to its inert nature, flexibility, low density, and low cost. Though resistant to chemical corrosion, it is susceptible to abrasion. To combat this problem, an abrasion-resistant liner is in development. However, it is not yet known how the liner will perform with regards to other common problems that affect pipe systems, such as mineral scale buildup. In mining applications, scale buildup occurs due to the very high contents of suspended and dissolved solids in water or slurry. For example, in systems transporting raw or treated acid mine drainage (AMD), scale can form on pipe surfaces due to sedimentation or the diffusion of particles onto the surface, or precipitation of solids directly onto the surface. In this study, pipe-loop experiments were conducted in the laboratory under three idealized AMD treatment scenarios (i.e., untreated, passively treated and actively treated) to compare mineral scale buildup on traditional versus lined PE pipe materials.
EN
Each acid mine drainage has a specific composition, but always contains sulphuric acid, dissolved heavy metals, sulphates, iron precipitates and their pH can be very low. The elimination of metals form the acid mine drainage is a severe environmental problem and has been a long-standing major concern to scientists, engineers, industry and governments. Various methods are used for the metals removal from waters, but any of them have been applied under commercial-scale conditions. Mostly studied are chemical and biological-chemical methods. Main aim of the paper was to interpret the combination of chemical and biological-chemical methods for the heavy metals elimination from the synthetic solution of acid mine drainage, coming from the zinc mine located in Tùnel Kingsmill outlet of the Rio Yaulì (district of Yauli – Perù). The metals selective precipitation as hydroxides (chemical method) and sulphides (biological-chemical method) at the various values of pH acid mine drainage is the fundamental of the examined process. For the hydrogen sulphide production the sulphate-reducing bacteria of genus Desulfovibrio was used. The selective sequential precipitation process reaches the selective precipitation of chosen metals with 97–99% efficiency – Fe, As, Al and Mn in the form of metal hydroxides, Cu and Zn as metal sulphides.
PL
Każdy kwaśny drenaż kopalniany ma określony skład, ale zawsze zawiera kwas siarkowy, rozpuszczone metale ciężkie, siarczany, osady żelaza, a jego pH może być bardzo niskie. Eliminacja metali z kwaśnego drenażu kopalnianego jest poważnym problemem środowiskowym i od dawna stanowi poważny problem dla naukowców, inżynierów, przemysłu i rządów. Różne metody są stosowane do usuwania metali z wód, ale żadna z nich została zastosowana w warunkach komercyjnych. Przeważnie badane są metody chemiczne i biologiczno-chemiczne. Głównym celem pracy była interpretacja połączenia chemicznych i biologiczno-chemicznych metod eliminacji metali ciężkich z syntetycznego roztworu kwaśnego drenażu kopalnianego pochodzącego z kopalni cynku zlokalizowanej w wylocie Tùnel Kingsmill w Rio Yaulì (dzielnica Yauli – Peru). Podstawą badanego procesu jest selektywne wytrącanie metali w postaci wodorotlenków (metoda chemiczna) i siarczków (metoda biologiczno-chemiczna) przy różnych wartościach pH kwaśnego drenażu kopalnianego. Do produkcji siarkowodoru wykorzystano bakterie redukujące siarczany z rodzaju Desulfovibrio. Proces selektywnego sekwencyjnego wytrącania osiąga selektywne wytrącanie wybranych metali z wydajnością 97–99% – Fe, As, Al i Mn w postaci wodorotlenków metali, Cu i Zn jako siarczków metali.
EN
The aim of the research was comparison rare earth elements contents in acidic waters related to coal mining in the eastern part of the Upper Silesian Coal Basin (USCB), southern Poland, and the former lignite mining in the Polish part of the Muskau Bend. Acidic runoff waters flowing down from mine waste piles in the USCB are enriched with REEs (ΣREEs 478.5 and 1831.9 µg/l) compared to waters filling old lignite mining excavations (ΣREEs 19.7-145.3 µg/l). High concentrations of REEs in acidic waters from the USCB result from their high aggressiveness (acidity 1020 mg/l CaCO3 and 3820 mg/l CaCO3, pH 2.4 and 3.0) to loamy sediments being a source of REEs, and increase as the time of their contact increases. Concentrations of NASC-normalized REEs show that waters from the USCB are enriched in MREEs (Sm, Eu, Gd and Tb), while the waters from the Muskau Bend are characterized by a positive anomaly of LREEs (La and Ce) and a less marked anomaly of MREEs (Gd, Tb and Dy).
PL
Celem badań było porównanie zawartości pierwiastków ziem rzadkich w kwaśnych wodach związanych z wydobyciem węgla kamiennego, we wschodniej części Górnośląskiego Zagłębia Węglowego (GZW) oraz związanych z dawnym wydobyciem węgla brunatnego w polskiej części Łuku Mużakowa. Kwaśne wody spływu powierzchniowego z hałd odpadów górniczych GZW są wzbogacone w pierwiastki ziem rzadkich (REE) (ΣREE 478,5 i 1831,9 μg/l) w porównaniu do wód wypełniających stare wyrobiska górnicze węgla brunatnego (ΣREE 19,7-145,3 μg/l). Wysokie stężenia REE w kwaśnych wodach z GZW wynikają z ich wysokiej agresywności (kwasowość 1020 mg/l CaCO3 i 3820 mg/l CaCO3, pH 2,4 i 3,0) względem ilastych osadów będących źródłem REE i rosną wraz z upływem czasu ich kontaktu z osadami. Stężenia pierwiastków ziem rzadkich znormalizowane do północnoamerykańskiego łupku złożonego (NASC) pokazują, że kwaśne wody z GZW są wzbogacone w pośrednie pierwiastki ziem rzadkich (MREE) (Sm, Eu, Gd i Tb), podczas gdy wody z Łuku Mużakowa charakteryzują się dodatnią anomalią stężeń lekkich pierwiastków ziem rzadkich LREE (La i Ce) i mniej wyraźnymi anomaliami pierwiastków pośrednich MREE (Gd, Tb i Dy).
EN
This paper presents the brief characteristics of rare earth elements (REE) and their occurrence in acid mine drainage (AMD) waters. The special emphasis is laid on REE classification, computation of shale-normalized coefficients and interpretation of REE anomalies. This paper also outlines the REE behavior in the environment, geochemical interactions and their potential application for assessing an impact of AMD on the environment.
EN
Acid mine drainage (AMD), which is also known as acid rock drainage (ARD), can cause serious environmental pollution, especially for surrounding aquatic and terrestrial ecosystems due toits low pH, high metal and sulfate concentration. Acid mine drainage is an urgent environmental problem for the worldwide ore mining industry. In this paper, we demonstrated that hydrophobic films can inhibit the oxidation of pyrite-bearing tailings to achieve the control of at-source AMD. The results of chemical leaching testing showed that the hydrophobic films formed by linoleic acid can suppress the oxidation of pyrite-bearing tailings and reduce the AMD production. In addition, the presence of hydrophobic films of linoleic acid on the surface of pyrite-bearing tailings was confirmed by the results from Fourier transform infrared (FTIR) analyses and scanning electron microscopy with energy dispersive spectrometry (SEM / EDS).
EN
The mining represents one the most common human activities that fundamentally impact not only the country itself but also have adverse effects on the fauna, flora and human beings. The negative impacts also include acid mine drainage which is formed by the dissolution of products resulting from the oxidation (chemically and microbiologically mediated) of sulphide minerals, mainly pyrite or iron disulphide. According to stringent European Union effluent discharge regulations it is necessary to look into innovative technologies to remove considerable amount of effluent rather than discharging into surface water. Resulting from previous partial achievements, the article is focused on the combination of chemical precipitation, ion exchange and biosorption techniques for the acid mine drainage treatment. Concentrations of four different metal cations (copper, iron, manganese, aluminium) and sulphates were observed. First stage of treatment included chemical precipitation by combination of oxidation using 31% hydrogen peroxide and subsequent precipitation with 0.1 M sodium hydroxide. After the first stage, the ion exchange using two different exchangers (PUROLITE MB400 resin and AMBERLITE MB20 resin) took place. The last stage of the experiments was focused of the biosorption study. Low – cost sorbents included in this case natural non – modified peat “PEATSORB” and hemp shives in modified state. Overall, the best results were observed after combination of MB20 resin in the second stage and subsequent using of modified hemp shives in the third stage of the treatment.
PL
Górnictwo jest jedną z działalności człowieka, która ma zasadniczy wpływ na środowisko - faunę, florę i ludzi. Negatywne oddziaływania obejmują także kwaśne wody z drenażu kopalnianego, który powstaje w wyniku rozpuszczania produktów powstałych w wyniku utleniania (chemicznego i mikrobiologicznego) minerałów siarczkowych, głównie pirytu lub dwusiarczku żelaza. Zgodnie z rygorystycznymi przepisami Unii Europejskiej dotyczącymi zrzutu ścieków konieczne jest przyjrzenie się innowacyjnym technologiom, które pozwalają na usunięcie znacznych ilości ścieków, aby uniknąć odprowadzania ich do wód powierzchniowych. W artykule Autorzy skoncentrowali się na kombinacji technik wytrącania chemicznego, wymiany jonowej i biosorpcji. Badano stężenia czterech różnych kationów metali (miedzi, żelaza, manganu, glinu) i siarczanów. Pierwszy etap ługowania obejmował wytrącanie chemiczne przez połączenie utleniania przy użyciu 31% nadtlenku wodoru i następnie wytrącanie 0,1 M wodorotlenkiem sodu. Po pierwszym etapie prowadzono wymianę jonową za pomocą dwóch różnych wymienników (żywica PUROLITE MB400 i żywica AMBERLITE MB20). Ostatni etap eksperymentów skoncentrowano na badaniu biosorpcji. Niskokosztowe sorbenty obejmują w tym przypadku naturalne torfy niezmodyfikowane „PEATSORB” i zmodyfikowane łupiny konopi. Ogólnie najlepsze wyniki zaobserwowano po połączeniu żywicy MB20 w drugim etapie i zastosowaniu zmodyfikowanych łupin konopi w trzecim etapie.
EN
The adsorption of lead ions onto a zeolite bearing tuff (stilbite) from synthetic acid aqueous solution and acid mine drainage taken from Sasa mine, Macedonia, is elaborated in this paper. The results present that adsorption occurs efficiently in both of cases. The physical and chemical properties of the used natural material, zeolite bearing tuff, are characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy. The concentration of metal ions in solution before and after treatment is obtained by AES-ICP. The effectivity of zeolite bearing tuff is determined through a series of experiments under batch conditions from single ion solutions, whereby the main parameters are the effects of initial pH of solution, mass of adsorbent, initial metal concentration in solution, contacting time and competing cations. The maximum capacity of zeolite bearing tuff for removal of lead ions from solution is determined by equilibrium studies. The experimental obtained data are fitted with Freundlich and Langmuir adsorption models. The experimental data are better fitted with Langmuir adsorption isotherm. Zeolite bearing tuff is effective adsorbent for treating acid mine drainage. The results showed that 99% of lead ions are removed from acid mine drainage, i.e. the concentration of lead ions from 0.329 mg/dm3 decrease to 0.002 mg/dm3. The pH value of acid mine drainage from 3.90 after treatment with zeolite bearing tuff increases to 5.36.
EN
Remobilization of heavy metals from the bottom liner system due to the seepage of acid mine drainage (AMD) is an important concern in the long-term management of tailing impoundment. Titration tests were carried out to evaluate the acid buffering capacity (ABC) of sewage sludge and to investigate its effect on the remobilization of heavy metals. Test results demonstrate that the ABC increases with solid/liquid ratio and anaerobic incubation time and it is mainly attributed to the abundant organic matters contained and increasing carbonate loads. The added heavy metals (Zn, Pb, and Cu) were well immobilized during the anaerobic incubation stage but were released out dramatically during the acidification especially when pH drops below 6.0 because of dissolution of carbonates and cation exchange of clay minerals. The calculated results, from a simplified model, indicate that high levels of remobilization of heavy metals are not expected during the typical management time because of the high ABC of compacted sewage sludge barrier. These results support that sewage sludge is a suitable bottom liner material for the management of AMD from tailings.
PL
W publikacji opisano działania podjęte dla rozpoznania oraz ograniczenia oddziaływania na środowisko kwaśnych, zanieczyszczonych wód spływu powierzchniowego, powstających na terenie obiektu unieszkodliwiania odpadów wydobywczych (OUOW) ZG „Janina” w Libiążu. W wyniku przeprowadzonych badań stwierdzono, że wody te reprezentują klasyczny przykład kwaśnych wód kopalnianych (ang. acid mine drainage – AMD) i charakteryzują się odczynem pH < 3, dużą kwasowością oraz znacznymi stężeniami metali (Fe, Al, Ni, Zn). Stwierdzono, że skład chemiczny wód jest czynnikiem decydującym o wyborze właściwej metody ich podczyszczania. Jednak nieuwzględnienie warunków lokalnych (dostępności wody, ukształtowania terenu) może prowadzić do przedwczesnego uszkodzenia/zniszczenia systemu. Do wdrożenia przyjęto system alkalizujący, pracujący okresowo (ang. periodically acting alkalinity producing system – PAAPS), dedykowany podczyszczaniu mniej zanieczyszczonych, krótko stagnujących kwaśnych wód. Głównymi elementami tego wielostopniowego systemu są: rów opaskowy, osadnik dwukomorowy, dren reaktywny i staw sedymentacyjny. System wyposażono również w zastawkę umożliwiającą regulację czasu retencji wody w drenie oraz oprzyrządowanie pozwalające na odprowadzanie osadów żelazistych. Badania przeprowadzone na etapie wdrożenia systemu wykazały skuteczność zastosowanych rozwiązań w zakresie alkalizacji wód oraz redukcji stężeń metali. Zidentyfikowano również zjawiska mogące wpływać na pracę systemu. W podsumowaniu stwierdzono, że system PAAPS wdrożony w sąsiedztwie OUOW ZG „Janina”, może być rekomendowany jako jedno z możliwych do zastosowania rozwiązań ograniczających oddziaływanie na środowisko wodne miejsc depozycji odpadów z górnictwa węgla kamiennego.
EN
This paper presents actions which were taken to identify and reduce the environmental impact of acidic, contaminated runoff waters accumulated in the waste dump of „Janina” colliery in Libiąż. The results showed that these waters represent a classic example of acid mine drainage (AMD) and are characterized by a pH value of <3, high acidity and significant concentrations of metals (Fe, Al, Ni, Zn). It was found that the chemical composition of water is a main factor in choosing the proper methods of pretreatment. However, the failure to take account of local conditions (water availability, topography) can lead to premature failure / destruction of the system. Periodically operating a alkanity producing system (PAAPS), dedicated for pretreatment of less polluted, stagnant acidic water, was chosen to be implemented. Main elements of a multi-stage system are: settlement ditch, two-chambered settling tank, limestone drain and settlement lagoon. The system has also a culvert that allows to adjust the retention time of water in the drain and instrumentation to discharge ferruginous sediments. Research carried out at the stage of implementation of the system has shown the effectiveness of the solutions for water alkalization and concentration of metals reduction. Phenomena that could affect the operation of the system were identified as well. As a result the PAAPS system implemented in the vicinity of „Janina” colliery can be recommended as one of the possible solutions to reduce the impact of mining waste deposition within the aquatic environment.
EN
Analysis of physical and chemical properties of water runoff samples collected in the vicinity of a spoil heap near the coal mine in Libiąż showed that they represented a classic example of acid mine drainage. For the first time in the Upper Silesian Coal Basin, it has been documented that rainwater in contact with a surface layer of waste containing pyrite (FeS2) and scarce carbonate phases, produces strongly acidified wastewater. This process is accompanied by a dramatic increase in the concentration of dissolved ions (eg. Cl-, SO , Fe, Al, Mn). Further geochemical changes occur in the ditch collecting water runoff at the base of the heap. At this stage, oxidation of pyrite catalyzed by bacteria, followed by hydrolysis of iron Fe3+ to form goethite (FeO(OH)) leads to conversion of the less acidic (pH 2.6-3.5), short-time retention runoff water into the aggressive stagnant runoff water (pH 2.1-2.8). Further disintegration of Carboniferous claystones occurs in the acidic stagnant water environment, leading to the decomposition of mineral phases containing heavy metals dispersed in the rock matrix and to mobilization of Zn, Ni, Cu, Cd, Co, and Cr.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.