Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 15

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  accelerators
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przybliżono problematykę kriomodułów, urządzeń stosowanych w akceleratorach cząstek naładowanych. Podkreślono znaczenie wykorzystania materiałów nadprzewodnikowych w ich konstrukcji i zalety takich rozwiązań. Usystematyzowano specyfikę występujących tu zagadnień i wskazano przykłady zastosowania.
EN
The article presents the subject of cryomodules, devices employed in charged particle accelerators. The authors emphasize the importance of using superconducting materials in the construction of cryomodules and the advantages of such a solution. A systematic approach to the specific problems is presented and supported by the examples of application.
EN
The embedded systems are increasingly becoming a key technological component of all kinds of complex technical systems and an exhaustive analysis of the state of the art of all current performance with respect to architectures, design methodologies, test and applications could be very interesting. The Advanced Encryption Standard (AES), based on the well-known algorithm Rijndael, is designed to be easily implemented in hardware and software platforms. General purpose computing on graphics processing unit (GPGPU) is an alternative to recongurable accelerators based on FPGA devices. This paper presents a direct comparison between FPGA and GPU used as accelerators for the AES cipher. The results achieved on both platforms and their analysis has been compared to several others in order to establish which device is best at playing the role of hardware accelerator by each solution showing interesting considerations in terms of throughput, speedup factor, and resource usage. This analysis suggests that, while hardware design on FPGA remains the natural choice for consumer-product design, GPUs are nowadays the preferable choice for PC based accelerators, especially when the processing routines are highly parallelizable.
EN
The emergence of many-core and massively-parallel computational accelerators (e.g., GPGPUs) has led to user demand for such resources in grid infrastructures. A widely adopted approach for discovering and accessing such resources has, however, yet to emerge. GPGPUs are an example of a larger class of computational resources, characterized in part by dependence on an allocated CPU. This paper terms such resources “CPU-Dependent Execution Resources” (CDERs). Five conceptual strategies for discovering and accessing CDERs are described and evaluated against key criteria, and all five strategies are compliant with GLUE 1.3, GLUE 2.0, or both. From this evaluation, two of the presented strategies clearly emerge as providing the greatest flexibility for publishing both static and dynamic CDER information and identifying CDERs that satisfy specific job requirements. Furthermore, a two-phase approach to job-submission is proposed for those jobs requiring access to CDERs. The approach is compatible with existing grid services. Examples are provided to illustrate job submission under each strategy.
EN
The most powerful now in the world, American X-ray laser LCLS (Linac Coherent Light Source), has been working as a research and user facility since 2009. It is further developed to LCLS II machine at the Stanford National Accelerator Laboratory SLAC in Menlo Park CA. In a certain sense, LCLS II is a response to the EXFEL machine and a logical extension of LCLS. All these machines are light sources of the fifth generation. EXFEL is expected to open user facility in 2016, at a cost of over 1 mld Euro. LCLS II, which design started in 2010, will be operational in 2017. The lasers LCLS, LCLS II and EXFEL use SASE and SEED methods to generate light and are powered by electron linacs, LCLS by a warm one, and EXFEL by a cold one. The linacs have energies approaching 20 GeV, and are around 2 - 3 km in length. EXFEL linac uses SRF TESLA microwave cavity technology at 1,3 GHz. A prototype of EXFEL was FLASH laser. SLAC Laboratory uses effectively over 50 years experience in research, building and exploitation of linear electron accelerators. In 2009, a part of the largest 3 km SLAC linac was used to build the LCLS machine. For the LCLS II machine a new infrastructure is build for two new laser beams and a number of experimental stations. A number of experts and young researchers from Poland participate in the design, construction and research of the biggest world linear and elliptical accelerators and FEL lasers like LCLS (Stanford), EXFEL (DESY) and CEBAF (JLab), and a few more. The paper concentrates on the development state-of-the-art of large laser infrastructure and its global and local impact, in the competitive world of R&D. LCLS infrastructure implications in Poland are considered.
EN
ILC machine–International Liner Collider, is one of two accelerators e+e-just under design and advanced consideration to be built with final energy of colliding electron and positron beams over 1 TeV. An alternative project to ILC is CLIC in CERN The ILC machine is an important complementary addition for the research potential of the LHC accelerator complex. The required length of ILC is minimally 30 km, but some versions of the TDR estimates mention nearly 50km. Superconducting RF linacs will be built using well established 1,3 GHz TESLA technology using ultrapure niobium or Nb3Sn resonant microwave cavities of RRR class, of ultimate finesse, working with gradients over 35MV/m, while some versions of the design mention ultimate confinement as high as 50MV/m. Several teams from Poland (Kraków. Warszawa, Wrocław – IFJ-PAN, AGH, UJ, NCBJ, UW, PW, PWr, INT-PAN) participate in the global design effort for this machine – including detectors, cryogenics, and SRF systems. Now it seems that the ILC machine will be built in Japan, during the period of 2016-2026. If true, Japan will turn to a world super-power in accelerator technology no.3 after CERN and USA. The paper summarizes the state-of-the-art of technical and administration activities around the immense ILC and CLIC machines, with emphasis on potential participation of Polish teams in the global effort of newly established LCC –The Linear Collider Consortium.
EN
The Compact Muon Solenoid CMS is one of the major detectors of the LHC Large Hadron Collider accelerator. The second, a competitive brother, is Atlas. The accelerator complex in CERN was shut down for two years, after two years of exploitation, and will resume its work in 2015. During this break, called long shutdown LS1 a number of complex components, including electronics and photonics, will be intensely refurbished. Not only the LHC itself but also the booster components and detectors. In particular, the beam luminosity will be doubled, as well as the colliding beam energy. This means tenfold increase in the integrated luminosity over a year to 250fb⁻¹y. Discovery potential will be increased. This potential will be used for subsequent two years, with essentially no breaks, till the LS2 in 2017. The paper presents an introduction to the research area of the LHC and chosen aspects of the CMS detector modernization. The Warsaw CMS Group is involved in CMS construction, commissioning, maintenance and refurbishment, in particular for algorithms and hardware of the muon trigger. The Group consists of members form the following local research institutions, academic and governmental: IFD-UW, NCBJ- Świerk and ISE-WEITI-PW.
PL
Najpotężniejszy obecnie na świecie, Amerykański Laser Rentgenowski LCLS (Liniac Coherent Ligt Source), czyli liniakowe koherentne źródło światła, działa od roku 2009, jako urządzenie badawcze i użytkowe, i jest dalej rozwijane do postaci LCLS II na terenie narodowego Amerykańskiego laboratorium SLAC przy uniwersytecie Stanforda, zlokalizowanego w miejscowości Menlo Park w Kalifornii. W pewnym sensie LCLS II jest odpowiedzią na budowę maszyny EXFEL. Jest to źródło światła piątej generacji. Przewiduje się uruchomienie EXFEL w latach 2015/16, kosztem znacznie ponad 1 mid Euro. LCLS II, którego projekt rozpoczął się w 2010, będzie uruchomiony w roku 2017. Lasery LCLS, LCLS II oraz EXFEL, wykorzystują metody SASE oraz SEED do generacji światła, i są zasilane liniakami elektronowymi, LCLS ciepłym a EXFEL zimnym, o energii kilkanaście GeV i długości ponad 2 km. Liniak EXFEL wykorzystuje technologię nadprzewodzącą SRF TESLA o częstotliwości 1,3 GHz. Prototypem maszyny EXFEL jest laser FLASH. Laboratorium SLAC korzysta z ponad 50-letniego doświadczenia budowy i eksploatacji liniowych akceleratorów elektronowych. W roku 2009 fragment największego, 3 km elektronowego akceleratora liniowego SLAC został wykorzystany do budowy maszyny LCLS. Dla maszyny LCLS II budowana jest nowa infrastruktura dla dwóch nowych wiązek laserowych. W badaniach i budowie największych światowych akceleratorów liniowych i pierścieniowych oraz laserów FEL takich jak LCLS (Stanford), EXFEL (DESY) i CEBAF (JLab) biorą udział specjaliści i młodzi uczeni z Polski.
EN
The most powerful now in the world, American X-ray laser LCLS (Linac Coherent Light Source), has been working as a research and user facility since 2009. It is further developed to LCLSII machine at the Stanford National Accelerator Laboratory SLAC in Menlo Park CA. In a certain sense, LCLS is a response to the EXFEL machine and a logical extension of LCLS. All these machines are light sources of the fifth generation. EXFE-Lis expected to open user facility in 2016, at a cost of over 1 bil Euro. LCLS II, which design started in 2010, will be operational in 2017. The lasers LCLS, LCLS II and EXFEL use SASE and SEED methods to generate light and are powered by electron liniacs, LCLS by a wrm one, and EXFEL by a cold one. The liniacs have energies approaching 20 GeV, and are around 2 - 3 km in length. EXFEL liniac uses SRF TESLA cavity technology at 1,3GHz. A prototype of EXFEL was FLASH laser. SLAC Laboratory uses effectively over 50-years experience in research, building and exploitation of linear electron accelerators. In 2009, a part of the largest 3 km SLAC liniac was used to build the LCLS machine. For the LCLS II machine a new infrastructure is build for two new laser beams and a number of experimental stations. A number of experts and young researchers from Poland participate in the design, construction and research of the biggest world linear and elliptical accelerators and FEL lasers like LCLS (Stanford), EXFEL (DESY) and CEBAF (JLab), and a few more.
PL
Kompaktowy Solenoid Mionowy CMS jest jednym z głównych detektorów akceleratora LHC. Kompleks akceleratorowy w CERN został właśnie wyłączony na dwa lata, po dwóch latach eksploatacji, i zostanie ponownie uruchomiony w roku 2015. Podczas tej przerwy szereg jego elementów będzie podlegać intensywnej modernizacji. Nie tylko sam LHC, ale także elementy boostera i detektory. W szczególności zwiększona zostanie dwukrotnie jasność wiązki i energia zderzeń cząsteczkowych. Oznacza to ok. 10 krotnie większą jasność zintegrowaną, do poziomu ok. 250 lub nawet 300 fb-1/rok. Potencjał odkrywczy maszyny ulegnie znacznemu zwiększeniu. Ten potencjał będzie eksploatowany ponownie niemal bez przerwy przez dwa lata. Artykuł przedstawia wprowadzenie w tematykę badawczą akceleratora LHC oraz wybrane aspekty modernizacji detektora CMS. W budowę i modernizację CMS zaangażowana jest grupa warszawska z IFD WF UW, NCBJ oraz ISE WEiTI PW.
EN
The Compact Muon Solenoid CMS is one of the major detectors of the LHC accelerator. The second is Atlas. The accelerator complex in CERN has just be shut down for two years, after two years of exploitation, and will resume its work in 2015. During this brake, called long shutdown LS1 a number of the complex components will be intensely refurbished. Not only the LHC it-self but also the booster components and detectors. In particular, the beam luminosity will be doubled, as well as the colliding beam energy. This means tenfold increase in the integrated luminosity over a year to 250 fb-1/y. Discovery potential will be increased. This potential will be used for subsequent two years, with essentially no breaks, till the LS2. The paper presents an introduction to the research area of the LHC and chosen aspects of the CMS detector modernization. The Warsaw CMS Group is invoived in CMS construction, commissioning, maintenance and refurbishment. The Group consists of members form IFD WF UW, NCBJ and ISE WEiTI PW.
PL
Europejski Laser Rentgenowski EXFEL jest budowany na terenie laboratorium Niemieckiego Synchrotronu Elektronowego DESY w Hamburgu. Przewiduje się jego uruchomienie w latach 2015/16, kosztem ponad 1 mld Euro. Laser, wykorzystujący metodę SASE, zasilany jest liniakiem elektronowym o energii 17,5 GeV i długości ponad 2 km. Liniak wykorzystuje technologię nadprzewodzącą SRF TESLA o częstotliwości 1,3 GHz. Prototypem maszyny EXFEL jest laser FLASH (o długości ok. 200 m), gdzie sprawdzono "proof of principle" i technologie transferowane do większej maszyny. Projekt rozpoczęto w latach dziewięćdziesiątych budową w DESY laboratorium TTF – Tesla Test Facility. Laser EXFEL jest pokłosiem większego (obecnie zarzuconego w Niemczech a podjętego przez środowisko międzynarodowe w postaci projektu ILC) projektu budowy wielkiego zderzacza teraelektronowoltowego TESLA. W budowie i badaniach laserów FLASH i EXFEL biorą udział specjaliści i młodzi uczeni z Polski.
EN
European X-Ray FEL - free electron laser is under construction in DESY Hamburg. It is scheduled to be operational at 2015/16 at a cost more than 1 billion Euro. The laser uses SASE method to generate x-ray light. It is propelled by an electron linac of 17,5 GeV energy and more than 2 km in length. The linac uses superconducting SRF TESLA technology working at 1,3 GHz in freguency. The prototype of EXFEL is FLASH Laser (200 m in length), where the "proof of principle" was checked, and from the technologies were transferred to the bigger machine. The project was started in the nineties by building a TTF Laboratory -Tesla Test Facility. The EXFEL laser is a child of a much bigger teraelectronovolt collider project TESLA (now abandoned in Germany but undertaken by international community in a form the ILC). A number of experts and young researchers from Poland participate in the design, construction and research of the FLASH and EXFEL lasers.
10
Content available Accelerators in materials research
EN
Abstract Since at least forty years accelerators of charged particles no longer belong to nuclear physics exclusively. This is especially true for accelerators at energies below 1 GeV. The vast majority of accelerators in this energy range is used for materials research and medicine. In materials research the applications are principally twofold: modifications of solids and surface layer microanalysis. Two most important challenges for materials research at the beginning of XXI century as determined by the Materials Research Society are: development of materials able to repair human body and development of materials for new electronic devices able to cope with the enormous amount of information to be stored and transmitted. The role of accelerators with regard to the challenges of modern technology will be discussed.
11
Content available remote Optical network and FPGAlDSP based control system for free electron laser
EN
The work presents a structural and functional model of a distributed low level radio frequency (LLRF) control, diagnostic and telemetric system for a large industrial object. An example of system implementation is the European TESLA-XFEL accelerator. The free electron laser is expected to work in the VUV region now and in the range of X-rays in the future. The design of a system based on the FPGA circuits and multi-gigabit optical network is discussed. The system design approach is fully parametric. The major emphasis is put on the methods of the functional and hardware concentration to use fully both: a very big transmission capacity of the optical fiber telemetric channels and very big processing power of the latest series of DSP/PC enhanced and optical I/O equipped, FPGA chips. The subject of the work is the design of a universal, laboratory module of the LLRF sub-system. The current parameters of the system model, under the design, are presented. The considerations are shown on the background of the system application in the hostile industrial environment. The work is a digest of a few development threads of the hybrid, optoelectronic, telemetric networks (HOTN). In particular, the outline of construction theory of HOTN node was presented as well as the technology of complex, modular, multilayer HOTN system PCBs. The PCBs contain critical sub-systems of the node and the network. The presented exemplary sub-systems are: fast optical data transmission of 2.5 Gbit/s, 3.125 Gbit/s and 10 Gbit/s; fast AlC and CIA multichannel data conversion managed by FPGA chip (40 MHz, 65 MHz, 105 MHz), data and functionality concentration, integration of floating point calculations in the DSP units of FPGA circuit, using now discrete and next integrated PC chip with embedded OS; optical distributed timing system of phase reference; and 1 GbEth video interface (over UTP or FX) for CCD telemetry and monitoring. The data and functions concentration in the HOTN node is necessary to make efficient use of the multigigabit optical fiber transmission and increasing the processing power of the FPGAlDSP/PC chips with optical I/O interfaces. The experiences with the development of the new generation of HOTN node based on the new technologies of data and functions concentration are extremely promising, because such systems are less expensive and require less labour.
12
Content available Status report of the VINCY Cyclotron
EN
The VINCY Cyclotron is the main part of the TESLA Accelerator Installation. The diameter of the pole of this machine is 2000 mm. Its bending constant is 145 MeV while its focusing constant is 75 MeV. The radiofrequency system of the machine consists of two l/4-resonators with the eigenfrequency in the range from 17 to 31 MHz. Ions coming from a heavy ion source or a light ion source will be injected into the machine axially. They will be introduced into its median plane by a spiral inflector. Heavy ions accelerated in the machine will be extracted from it by a foil stripping system or by an electrostatic deflection system. Light ions will be extracted from it by the foil stripping system. The first programs of use of the VINCY Cyclotron are related to routine and experimental production of radioisotopes and radiopharmaceuticals, and to biomedical research with ion beams. The first beam extracted from the machine will be the proton beam of the energy of 22 MeV obtained from the H2+ beam extracted from the light ion source. This beam will be used first for production of radioisotope 18F and radio-pharmaceutical 18FDG, to be employed for positron emission tomography
13
Content available remote Eksperymenty fizyki wysokich energii ostatnich dwudziestu lat
PL
Artykuł zawiera krótką dyskusję problemów poznawczych stojących przed fizyką wysokich energii (f.w.e) w ostatnich dwudziestu latach oraz krótki przegląd akceleratorów podstawowych narzędzi badawczych, przy których wykonuje się eksperymenty. Na tym tle zostały omówione niektóre układy eksperymentalne, ze szczególnym uwzględnieniem tych, w budowę których znaczący wkład wniosły zespoły polskie.
EN
This paper contains a short discussion of basic issues addressed in high energy physics in the last two decades, followed by a short summary of properties of high energy accelerators active during this period. Selected experiments are presented and briefly discussed, with emphasis on those with significant participation of Polish groups.
PL
W pracy przedstawiono nowy kierunek wiedzy, obecnie intensywnie rozwijany, jakim jest umacnianie warstw wierzchnich przez wprowadzenie na duże głębokości cząstek innego materiału z prędkościami znacznie przewyższającymi prędkość dźwięku. Opisano niektóre typy akceleratorów, struktury i mechanizmy wnikania cząstek opartych na założeniu, iż wnikanie ich w podłoże na duże głębokości może dokonywać się tylko pod warunkiem wywoływania w podłożu specyficznego stanu energetycznie wysoko wzbudzonego, charakteryzującego się naruszeniem krystalicznej budowy materiału.
EN
The intended aim of the paper is to present a new line of knowledge and research under an intense development nowadays, i.e. the hardening of surface layers by means of introducing another material deep into the basis metal with a high-speed impact. What has been given consideration is accelerators, structures and mechanisms of penetration as based on the assumption that the penetration of particles deep into the basis metal can proceed provided that some specific, high excited energy state has been induced, namely the one featured with some disarrangement of crystal structure of the material.
15
Content available remote Particle accelerators for industrial processing. Part 2
EN
The applications of over 1000 electron beam (EB) accelerator processors used recently worldwide span technological fields from material modification to medical sterilization and food processing. The performance level achieved by the main manufacturers is demonstrated by some selected parameters of processors in the energy range from 0.1 MeV to 10 MeV. The design of the new generation of low cost compact in-line and stand-alone accelerators is discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.