Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  abiotic stress
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The distinctive qualities and wide array of possible applications of nanotechnology have garnered considerable attention. Nanotechnology offers a groundbreaking way for expanding agricultural output that is also ecologically benign, helpful to living things, and economically priced – all without losing quality. There is a growing trend towards using eco-friendly technologies as substitutes for conventional agricultural inputs, such as fertilizers and insecticides. With the aid of nanotechnology, the confines of conventional farming techniques can be overcome. As a result, it becomes essential for investigators to devote their energies to the noteworthy nanoparticles (NPs) in agriculture investigations that have been distributed. It offered a fresh perspective on the development and application of nanoparticles as nano-fertilizers and nano-pesticides in agriculture and a way to heighten bio-factor execution. Furthermore, we discuss the relations of NPs with plants, the perils and putrefaction of nanomaterials in plants, and the utility of NPs in the reduction of stress triggered by heavy metal toxicity and abiotic factors. It is imperative that nano-fertilizers are practiced to reduce the environmental maltreatment caused by conventional, inorganic fertilizers. Nano-fertilizers are more sensitive and have the ability to penetrate the epidermis, empowering them to promote nutrient consumption efficiency while reducing nutrient overabundance. A study found that NPs may cause oxidative stress symptoms in higher plants if they adhere to cell surfaces or organelles. Understanding the benefits and drawbacks of using nano-fertilizers instead of conventional fertilizers is valuable, and it is the purpose of this book chapter to provide this information.
EN
Nutrient deficiency (ND) stands as a prominent environmental factor that significantly impacts global plant growth and productivity. While numerous methods have been employed for detecting nutrient deficiencies in plants, many of them are invasive, time-consuming, and costly. In contrast, chlorophyll fluorescence (ChlF) signals have emerged as a non-destructive tool for the identification of specific nutrient deficiencies, such as nitrogen (N), phosphorus (P), and potassium (K), across various plant species. In this pioneering study, ChlF measurements were employed for the first time to detect a combination of nutrient deficiencies, including deficiencies in nitrogen and phosphorus (-NP), nitrogen and potassium (-NK), potassium and phosphorus (-KP), and a complete NPK deficiency (-NPK). The experiment was conducted using wheat (Triticum aestivum) and maize (Zea mays) plants, which were grown under controlled laboratory conditions. An optimal hydroponic system was established to facilitate eight experimental conditions, namely: control, -N, -P, -K, -NP, -NK, -KP, and -NPK. Measurements were systematically collected at two-day intervals over a span of 24 days. Our findings demonstrate that chlorophyll fluorescence signals can enable the differentiation of various nutrient deficiencies even prior to the onset of observable symptoms. Furthermore, the examination of chlorophyll fluorescence parameters enables us not only to identify a singular macronutrient deficiency but also to detect multiple macronutrient deficiencies concurrently in a plant.
EN
The purpose of the conducted research was to evaluate the effect of four biostimulants on the palatability and darkening of the flesh of raw and cooked tubers according to a 9-degree scale of two varieties of 'Albik' and 'Rubik' of Jerusalem artichoke – JA (Helianthus tuberosus L.). Field trials were conducted in 2021–2022 with biostimulants on an individual farm in Międzyrzec Podlaski, Poland. The experiment was established using the randomized sub-block (split-plot) method. The effect of two factors was studied. The first-order factor was two varieties of Helianthus tuberosus: Albik and Rubik, and the second-order variants of biostimulant application: Kaishi, Maral, Nutrigreen AD, Vanadoo. The effectiveness of the application of individual biostimulants in the cultivation of two varieties of Jerusalem artichoke was compared with the control object (without the application of biostimulants). The methods of applying biostimulants did not change the palatability and darkening of the flesh of cooked tubers, and raw tubers after 1 hour, but had a significant effect on the darkening of the flesh of raw tubers 10 minutes after cutting. The raw and cooked flesh of the 'Albik' variety darkened the least, and this variety proved to be the most palatable on a scale of 1–9.
EN
Over the past years, alterations in the environment have had an adverse impact on the global agricultural system, leading to difficulties in plant growth, physiology, and productivity due to non-living factors. These difficulties pose a significant risk to both global food security and agricultural advancement, necessitating innovative methods for long-term sustainability. Nanotechnology has emerged as a promising solution to address these difficulties by utilizing nanoscale products like nanofertilizers, nanofungicides, nanoherbicides, and nanopesticides. Nanoparticles provide distinct advantages in agriculture due to their small size, ability to easily penetrate cellular barriers, and efficient absorption by plants. Numerous studies have demonstrated that the application of nanoparticles can improve both the quantity and quality of crop yields, even when faced with various biological and environmental pressures. This research study primarily focuses on investigating the impact of non-living pressures on plants and examining how nanoparticles can help alleviate these effects. Additionally, it explores the molecular, metabolic, and anatomical adaptations that plants undergo to thrive in challenging environments. Nonetheless, it is essential to acknowledge that the widespread utilization of nanotechnology raises concerns regarding potential risks to the environment and human health.
EN
Potato from the Solanaceae family is one of the most important crops in the world and its cultivation is common in many places. The average yield of this crop is 20 Mg·ha-1 and it is compatible with climatic conditions in many parts of the world. The experiment studied the possibility of exogenous regulation of the adaptive potential available for four potato cultivars through the use of growth stimulants with different action mechanisms: 24-epibrassinolide (EBL) and chitosan biopolymer (CHT). The results allowed us to establish significant differences in growth parameters, plant height, leaf index, vegetation index, chlorophyll content, and yield structure. Monitoring growth and predicting yields well before harvest are essential to effectively managing potato productivity. Studies have confirmed the empirical relationship between the normalised difference vegetation index (NDVI) and N-tester vegetation index data at various stages of potato growth with yield data. Statistical linear regression models were used to develop an empirical relationship between the NDVI and N-tester data and yield at different stages of crop growth. The equations have a maximum determination coefficient (R2) of 0.63 for the N-tester and 0.74 for the NDVI during the flowering phase (BBCH1 65). NDVI and N-tester vegetation index positively correlated with yield data at all growth stages.
EN
Salinity is one of the most significant abiotic stress factors influencing crop production, especially in arid and semi-arid regions. Plants’ response to salinity stress depends on the cultivated genotype. A pot experiment was conducted to study the impact of two concentrations of sodium chloride (4 and 6 dS∙m-1) on some physiological and production traits of 58 chickpea genotypes. A genetic variation in the response of the investigated chickpea genotypes for NaCl-induced salinity stress was noted. Studied morphophysiological traits and yield components were affected under salt stress in all genotypes tested. Plant height was observed to have the lowest rate of reduction (32%, 48%) at 4 and 6 dS∙m-1, respectively. Leaf stomatal conductance decreased as salinity increased. Salinity stress conditions affected all studied yield components, but there was a genetic variation in the response of the studied genotypes. Under no stress conditions and compared to the other genotypes, the number of pods was significantly higher in BG362 genotype. The seed number was significantly higher in ILC9076 genotype. The 100 seed weight was significantly higher in the genotype ILC2664. The mean seed yield was significantly higher in ILC9354 and the harvest index was significantly higher in ILC8617. In general, salinity stress caused the reduction of all parameters. We assume that the assessment of tolerance of chickpea (Cicer arietinum L.) genotypes to salinity stress should be based on a complex of morpho-physiological traits and analysis of yield complement.
EN
Abiotic stressors contribute to growth restriction and developmental disorders in plants. Early detection of the first signs of changes in plant functioning is very important. The objective of this study was to identify chlorophyll fluorescence parameters that change under phosphorus deficiency stress in cucumber. In this work, a trail to study the early changes caused by phosphorus deficiency in cucumber plants by analysing their photosynthetic performance is presented. Chlorophyll-a fluorescence (ChF) parameters were measured every 7 days for a period of 28 days. Measurements were made separately on young and old leaves and on cucumber fruit. Parameters that decreased during the stress were: p2G, PIabs, PItotal, REo/CSo, and TRo/CSo. P deficiency decreased total electron carriers per RC (ECo/RC), yields (TRo/ABS (Fv/Fm), ETo/TRo, REo/ETo, ETo/ABS and REo/ABS), fluxes (REo/RC and REo/CSo) and fractional reduction of PSI end electron acceptors, and damaged all photochemical and non-photochemical redox reactions. Principal component analysis revealed a group of ChF parameters that may indicate early phosphorus deficiency in cucumber plants. Our results are used in the discovery of sensitive bioindicators of phosphorus deficiency in cucumber plants. Most JIP test parameters are linked to mathematical equations, so we recommend using of advanced statistical tools, such as principal component analysis, which should be considered very useful for stress identification. It has also been shown to be more effective in multivariate methods compared to univariate statistical methods was demonstrated.
EN
Urban plants play a significant role in shaping the microclimate of the modern city, in addition to the recreational and aesthetic functions. Climate change and sharp changes in temperature affect the plant growth and development, so the question of studying the adaptive potential of the plant range in cities to temperature variability is relevant and important. Researchers and scientists around the world are studying the impact of biotic and abiotic factors on plants, but the variability of the plant organisms in the urban ecosystem is still unexplored. The data from the analysis of the frequency of occurrence plants in Kyiv green spaces show that Tilia cordata Mill., Aesculus hippocastanum L., Spiraea×vanhouttei (Briot) Zabel. and Carpinus betulus L. are most represented among the researched species. The article presents the results of the assessment of heat resistance by using the method of Matskov (1976) of 13 ornamental woody and shrubby species. Besides, the plants were separated into groups of tolerance to high temperatures. It was established that the T. cordata plants are characterized by the highest indicators of heat tolerance and they can be recommended for the creation of open landscapes. The A. hippocastanum, Catalpa bignonioides Walt., S. vanhouttei and Forsythia europaea Degen & Bald. plants are characterized by ‘moderate tolerance’ indicators to high temperature stress, therefore they can be recommended for the creation of semi-open/open landscape types. Consequently, for the formation of semi-open landscapes, using the species Platanus occidentalis L., Quercus robur L., Q. rubra, Syringa vulgaris L., Berberis thunbergii DC. and Ligustrum vulgare L. which were assessed as ‘moderately sensitive’, is recommended. The leaves of the Carpinus betulus L. and Ribes aureum Pursh. plants were most vulnerable to high temperature stress; therefore, the species are recommended for the formation of closed landscape types. Despite the comparative classification of ornamental plants in terms of heat-resistance, many issues remain unstudied and need to be clarified in terms of ecology, physiology, biochemistry and phytopathology for the plants of urban green spaces.
EN
Gymnemic acid (GA), a well known anti-diabetic compound has been detected in methanol extracts of intact leaves and in vitro callus cultures derived from leaf explants of Gymnema sylvestre. Callus biomass was developed in MS medium with optimum plant growth regulators (OPGRs) of 2,4-D (1.5 mg L-1) + KN (0.5 mg L-1) under abiotic stress conditions at 45 days determined by growth curve analysis. GA detection and quantification were carried out using thin-layer chromatography (TLC), highperformance thin-layer chromatography (HPTLC), high-performance liquid chromatography (HPLC), and gravimetric techniques. GA detection peak area and their absorption spectra were evaluated through HPTLC and HPLC with the standard GA. Quantification of GA had showed the linearity, accuracy, robustness and precision by HPLC. GA content was significantly higher in gravimetric method than HPLC. All these methods were found to be simple, accurate, selective and rapid and could be successfully applied for the determination of GA. It could have potential as a pharmaceutical drug for Type 1 diabetes mellitus (IDDM) and obesity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.