Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Zooplankton
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The upper Gulf of California is one of the most energetic regions owing to its tidal range and strong tidal currents, making the upper gulf and the archipelago zone highly turbulent regions; the abundance of zooplankton should be associated with mixing phenomena. We aimed to determine the latitudinal distribution of zooplanktonic organisms in this region and the influence of the islands on their distribution and abundance using historical data. Distribution of abundance followed the current patterns, the archipelago influences abundance favorably but does not affect diversity. Latitudinal zooplankton richness had a quasi-parabolic shape. A decrease in richness was observed at 27.5°N, in the archipelago region, with maximum richness at 26.5°N and 28.5°N. The distribution of latitudinal ranges is consistent with geometric constraints models; taxa with wide ranges are in the central area, while those with narrow ranges are near the boundaries and the Upper Gulf. Zooplankton responds in some way to the existence of the southern boundary as shown by the decrease of richness in this region. At the whole scale of the Gulf, the distribution of richness followed geometric constraints model, while at smaller scales, distribution and abundance are conditioned by the hydrodynamics of the Gulf. We compared zooplankton spatial distribution with Sea Level Anomaly, Sea Surface Temperature, and Chlorophyll-a concentrations from Copernicus to establish relationships between these factors. We performed Cluster and Redundancy Analysis to characterize similarities between stations in terms of biomass and taxon composition and to assess the importance of environmental variables on the distribution of zooplankton.
EN
Zooplankton availability is a major factor affecting herring body condition that in turn describes its well-being. As herring feeding is known to be selective, it is relevant to access its preferences upon zooplankton species and particular copepod developmental stages to forecast possible intraspecific competition for resources in the species scarce environment of the Gulf of Riga where herring stock size due to successful recruitment has almost doubled since 1989. This study tries to answer whether the small-sized plankters dominated zooplankton community permits herring to be a selective eater. Also how herring body condition has changed in connection to environment driven zooplankton community changes. The time series of zooplankton abundance and herring condition from 1995–2012 were studied; and a detailed study of herring diet was performed monthly by stomach content analysis during the main feeding season in 2011 and 2012. We found that herring selectively prey on Limnocalanus macrurus and older copepodite stages of Eurytemora affinis, and moreover these were species of whose selected copepodite stages explained most of variation in herring condition factor. The found relationship between herring feeding selectivity and long-term variation of herring condition allows applying spring zooplankton abundance of E. affinis and L. macrurus to estimate favourable feeding conditions for herring, and could also require the revision of currently used model for herring recruitment estimations, where only biomass of E. affinis is taken into account. In recent years, the high condition of herring can be associated with a considerable increase of lipid-rich copepod species L. macrurus.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.