Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Zea mays
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Nutrient deficiency (ND) stands as a prominent environmental factor that significantly impacts global plant growth and productivity. While numerous methods have been employed for detecting nutrient deficiencies in plants, many of them are invasive, time-consuming, and costly. In contrast, chlorophyll fluorescence (ChlF) signals have emerged as a non-destructive tool for the identification of specific nutrient deficiencies, such as nitrogen (N), phosphorus (P), and potassium (K), across various plant species. In this pioneering study, ChlF measurements were employed for the first time to detect a combination of nutrient deficiencies, including deficiencies in nitrogen and phosphorus (-NP), nitrogen and potassium (-NK), potassium and phosphorus (-KP), and a complete NPK deficiency (-NPK). The experiment was conducted using wheat (Triticum aestivum) and maize (Zea mays) plants, which were grown under controlled laboratory conditions. An optimal hydroponic system was established to facilitate eight experimental conditions, namely: control, -N, -P, -K, -NP, -NK, -KP, and -NPK. Measurements were systematically collected at two-day intervals over a span of 24 days. Our findings demonstrate that chlorophyll fluorescence signals can enable the differentiation of various nutrient deficiencies even prior to the onset of observable symptoms. Furthermore, the examination of chlorophyll fluorescence parameters enables us not only to identify a singular macronutrient deficiency but also to detect multiple macronutrient deficiencies concurrently in a plant.
EN
Several studies projected that by year 2025, 4.3 billion urban residents will be generating about 2.2 billion tonnes of municipal solid waste per year, over 10% of which will be plastics. The landfills in Nigeria are uncontrolled and do not conform to the international standards of similar operations elsewhere in the world; this makes the disposal of synthetic polymers in the soil even more hazardous. Due to the availability and relative inexpensiveness of Zea mays in Nigeria, this study explores the use of this natural polymer, blended with low density polyethylene (LDPE) as an alternative to synthetic plastics. Biodegradability of the biopolymer blend was observed while buried in loamy sand soil with properties similar to the soil found in the general area of the study. The results showed that a polymer blend with 50% LDPE (50 CoS) by weight had the most uniform weight loss over the period of the study. Under the soil conditions given in the study, 50 CoS also had the steadiest rate of degradation. Hence 50% LDPE (wt.%) blended with Zea mays starch is the optimal ratio with regard to the degradability of biopolymer in loamy sand soil Ota, Ogun State, Nigeria.
EN
We used induced phytoextraction to follow the effect of ethylene glycol tetraacetic acid (EGTA) on increase of cadmium transfer from contaminated soil (5mgCd*kg-1 and 10mgCd*kg-1) to maize plants (Zea mays L.). In the pot experiments, uptake of cadmium into roots and green parts increased after application of the chelating agent. Addition of 6mmolEGTA*kg-1 affected 90% of Cd increase in roots in comparison with EGTA non-treated variant. In green parts, addition of 6 and 12mmolEGTA*kg-1 resulted in 100% increase at the same level of Cd contamination of soil substrata. The efficiency of cadmium uptake by maize doubled after addition of 6mmolEGTA*kg-1 into contaminated soil. Application of 12mmolEGTA*kg-1 in the soil, contaminated with 10mgCd*kg-1, resulted to twofold enhancement of cadmium uptake by the maize. The results showed that induced phytoextraction can decrease cadmium content in the soil to the level convenient for growing of hygienic clean crops.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.