Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Zarządzanie deszczówką
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Adaptation to climate change often aims to increase the ability of cities to retain water. In recent years, there has been a shift in the approach to managing storm water from traditional methods to nature-based methods, which view storm water as a valuable resource. This study conducted a systematic analysis of eleven contemporary housing estates that are commonly considered sustainable. The study aimed to identify the elements of rainwater management and determine whether these elements form a system. The research found that, in most cases, not all elements of a rainwater management system (RMS) were present. The housing estates in Gdańsk and Gdynia demonstrated some features of an RMS but were still incomplete due to missing elements such as channels and gaps in curbs that guide rainwater. The results suggest that the implementation of some elements of an RMS does not necessarily create a fully functional system. A fully effective RMS requires the integration of all necessary elements to allow water to flow between them.
EN
The soil layer is the most important structure for green roof runoff reduction and vegetation growth. The mechanisms of runoff reduction and water content of green roofs with varying soil depth and saturated water content (θs) under dry–wet cycles are not well understood. Field and numerical methodologies were adopted for investigation in this study. The green roof drainage and water content were observed for a given period (i.e., August 2020 to July 2021). A numerical model was calibrated and validated for the analysis of annual runoff reduction and water stress with different θs and soil depths. Based on climate in southern China, the green roof's annual runoff reduction rate (ARR) (100 mm soil) was 33%, and the annual water stress was 168 days. With an increase in θs by 0.1 mm3 /mm3 , the ARR of green roofs increased by an average of 5% while the water stress was reduced by an average of 32 days. With an increase in soil depth by 100 mm, the average ARR increased by 4%, whereas the average water stress was reduced by 6 days. It was shown that the runoff reduction is enhanced with an increasing θs and soil depth during a longer antecedent dry weather period, but it had no significant effect on runoff reduction during back-to-back rainfall events. Increasing soil depth had no significant improvement in runoff reduction and water stress beyond a certain point. Consequently, the optimal structural configuration of green roofs was considered as a soil depth of 200 mm (θs of 0.5 mm3 /mm3 ).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.