Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  X-ray region
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote The Evolution of Unstable 'Beta-Gamma' Magnetic Fields of Active Region AR 2222
EN
This event allows us to investigate how plasma–magnetic field interactions in the solar corona can produce suprathermal electron populations over periods from tens of minutes to several hours, and the interactions of wave-particle and wave-wave lead to characteristic fine structures of the emission. An intense and broad solar radio burst type IV was recorded by CALLISTO spectrometer from 240360 MHz. Using data from a the KRIM observatory, we aim to provide a comprehensive description of the synopsis formation and dynamics of a a single solar burst type IV event due to active region AR2222. For five minutes, the event exhibited strong pulsations on various time scales and “broad patterns” with a formation of a group type III solar burst. AR 2222 remained the most active region, producing a number of minor C-Class solar flares. The speed of the solar wind also exceeds 370.8 km/second with 10.2 g/cm3 density of proton in the solar corona. The radio flux also shows 171 SFU. Besides, there are 3 active regions, AR2217, AR2219 and AR2222 potentially pose a threat for Mclass solar flares. Active region AR2222 have unstable 'beta-gamma' magnetic fields that harbor energy for M-class flares. As a conclusion, we believed that Sun’s activities more active in order to achieve solar maximum cycle at the end of 2014.
EN
Recent data of a complex solar radio burst type II is analyzed and reviewed. The monitoring of solar radio burst was done by using the Compact Astronomical Low cost, Low frequency Instrument for Spectroscopy and Transportable Observatory (CALLISTO) from BLEIN 7 meter dish telescope at ETH, Zurich in frequency range of 25 until 1000 MHz. During the inspection of the X-ray spectrum, we observed that the C3-category flare was caused by a filament of magnetism, which rose up and erupted between 0400 and 0600 UT. This occurred three hours before the signature of solar radio burst type II. There are some of the material in the filament fell back to the sun, causing a flash of X-rays where it hit the Sun surface. This is a Hydra Flare which occurred without sunspots. On the basis of these results, we suggest that a single shock in the leading edge of the CME could be the source of the multiple type II bursts and support the notion that the CME nose and the CME-streamer interaction are the two main mechanisms able to generate the bursts.
EN
The observational of active region emission of the Sun contain an critical answer of the time-dependence of the underlying heating mechanism. In this case, we investigate an X2.2 solar flare from a new Active Region AR2087 on the southeast limb of the Sun. The solar flare peaked in the X-rays is around 11:42 UT. It was found that the snapshot of this event from the Solar Dynamics Observatory (SDO) channel with the GOES X-ray plot overlayed. The flare is very bright causes by a diffraction pattern. We explore a parameter space of heating and coronal loop properties. Based on the wavelength, it shows plasma around 6 million Kelvin. At the same time, data from the NOAA issued an R3 level radio blackout, which is centered on Earth where the Sun is currently overhead at the North Africa region. This temporary blackout is caused by the heating of the upper atmosphere from the flare. The blackout level is now at an R1 and this will soon pass. Other than the temporary radio blackout for high frequencies centered over Africa this event will not have a direct impact on us. Until now, we await more data concerning a possible Coronal Mass Ejections (CMEs) but anything would more than likely not head directly towards Earth. An active region AR2087 just let out an X1.5 flare peaking at 12:52 UT. This shows plasmas with temperatures up to about 10 Million Kelvin. This event is considered one of the massive eruption of the Sun this year.
EN
The main feature of solar radio type II, III and IV burst is outlined. In this event there are three combinations of bursts that related to the solar flare phenomenon on 6th July 2012. This event is one of good example to observe how far the influence of type II burst could impact the formation of type IV burst and III solar bursts. At first stage, it was observed that a sub-type of H burst form within 2 minutes before type IV solar burst form. The type IV burst is due to the eruption of active region AR 1515 with a fine structure (FS). We used a Blein CALLISTO data in this case. Further analysis also showed that the total energy of the burst are in the range of 4.875 × 10-25 J to 8.48 × 10-25 J and plasma frequency is equal to 1.24 × 104 Hz. Therefore, we could say that in this case, before the solar burst type III occurred, the ejection of CMEs already ejected.
EN
Using data from a BLEIN Callisto site, we aim to provide a comprehensive description of the synopsis formation and dynamics of a a single solar burst type III and IV event due to active region AR1890. This eruption has started since 14:15 UT with a formation of type III solar burst. To investigate the importance of the role of type III solar burst can potentially form a type IV solar burst, the literature review of both bursts is outlined in detailed. The orientation and position of AR1890 make the explosion of a class C-solar flare is not directly to the Earth. Nevertheless, it is clear that the interactions of others sunspots such as AR1893,AR1895,AR1896, AR1897 and AR1898 should be studied in detail to understand what makes the type III burst formed before the type IV solar burst.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.