Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Wilcox diagram
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A comprehensive review of the salinity assessment in groundwater resources of Iran
EN
The main purpose of the present research is to propose a comprehensive attitude of the salinity in groundwater resources of Iran using 116 papers in the assessment of groundwater quality in different areas of the country. The conducted study contains the measurement of the values of physicochemical parameters of which electrical conductivity (EC), as the fundamental parameter for salinity determination of groundwater, was considered mostly, and by comparing it with standards, as well as employing the Wilcox diagram, the quality of water was assessed for drinking and agricultural purposes, respectively. Study of the previous papers revealed that in only the west and northwest of the country, the groundwater quality was suitable for drinking, and in the majority of provinces, EC values exceeded the recommended limits. The highest EC level was seen in central provinces which led to the aggravation of groundwater and the largest proportion of salinity, putting the quality of water in an unsuitable class for drinking. Additionally, the assessment of groundwater quality for irrigation uses using the Wilcox diagram showed high and very high salinity rates in most areas of the study area. Northwestern provinces relatively had the lowest level putting in C3-S1 class, while central areas reached the highest with C4-S4 classification. Deficiency of rainfall, high rate of groundwater exploitation, and the intrusion of saltwater from Salt Lake were the principal reasons for groundwater deterioration in central parts of the study area.
EN
Water is a major strategic issue and a key factor in sustainable development for all countries around the world. In Morocco, groundwater has a major importance in the national economic policy. For this reason, sustainable water resources management programs are periodically installed to prevent their qualitative and quantitative degradation, which conditions future development and is part of the research strategy to optimize and mitigate environmental problems. The Temara water table, which extends over nearly 350 km2 is part of these water resources that must be preserved. This issue is of increasing concern to researchers and decision makers in the field of water resources management. The hydrochemical study carried out on 48 samples taken in the study area during a sampling campaign carried out during the low water period showed that the water table has facies of chloride and sulphate calcic and magnesian type according to the Piper diagram. While the classification diagrams of Wilcox and Richards waters revealed the suitability of these waters for irrigation except for some points that present high contents of Nitrate (NO3-), Magnesium (Mg2+), Sulphate (SO42-) and Chloride (Cl-), linked to both the lithological nature of the enclosing formations and the effect of the agricultural activity which induces the phenomenon of return of irrigation water loaded with salts from the fertilizers used, towards the water table.
EN
This study presents a comprehensive analysis of the hydrochemistry of the Tendrara aquifer in the Tendrara region of Morocco. The study encompasses various aspects of the region, including its geography, administration, relief, demography, economy, and climate, to establish a solid understanding of its water facies. Ten water sampling points have been chosen, and standard methods were used to analyze the physicochemical characteristics of the water, temperature, electrical conductivity, and concentrations of different ions and compounds. Descriptive statistics and hydrochemical classifications, including Piper’s, Schoeler’s, Wilcox’s, and ternary classification, were applied to classify and identify different water facies. Additionally, principal component analysis (PCA) was conducted to explore the relationships between different water parameters. The results revealed distinct hydrochemical characteristics within the Tendrara aquifer, with predominantly alkaline water and varying concentrations of potassium, sodium, calcium, magnesium, chlorides, nitrates, bicarbonates, and sulfates. The numerical results indicated that the concentrations of major ions in the Tendrara aquifer varied within the following ranges: potassium (K+) 2.6–47 mg/l, sodium (Na+) 17–170 mg/l, calcium (Ca2+) 40.882–178 mg/l, magnesium (Mg2+) 33.534–159.72 mg/l, chlorides (Cl-) 22.865–244.201 mg/l, nitrates (NO3-) 2.806–237.85 mg/l, bicarbonates (HCO3-) 183–311.1 mg/l, and sulfates (SO42-) 40.392–336.6 mg/l. The electrical conductivity of the water ranged from 660 to 2640 μS/cm, indicating variations in mineral content and overall water quality analysis of the diagram shows that the Tendrara aquifer’s subterranean waters are predominantly chloride-rich and sulfate-rich in calcium and magnesium. These findings contribute to a better understanding of the hydrochemistry of the Tendrara aquifer and have implications for water resource management in the region. The knowledge gained from this study can inform decision-making processes related to water treatment, conservation, and protection. It highlights the need for sustainable practices to ensure the availability of clean and safe water for the local population. Further research is recommended to investigate temporal variations, sources of contamination, and the long-term impacts of anthropogenic activities on the Tendrara aquifer’s hydrochemistry.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.