Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Weyl group
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Toroidal Algorithms for Mesh Geometries of Root Orbits of the Dynkin Diagram D4
EN
By applying symbolic and numerical computation and the spectral Coxeter analysis technique of matrix morsifications introduced in our previous paper [Fund. Inform. 124(2013)], we present a complete algorithmic classification of the rational morsifications and their mesh geometries of root orbits for the Dynkin diagram 4 The structure of the isotropy group Gl(4, {Z})D4 of D 4 is also studied. As a byproduct of our technique we show that, given a connected loop-free positive edge-bipartite graph Δ, with n ≥ 4 vertices (in the sense of our paper [SIAM J. Discrete Math. 27(2013)]) and the positive definite Gram unit formqΔ ; Zn→Z, any positive integer d ≥ 1 can be presented as d = qΔ(v), with v Є Zn In case n = 3, a positive integer d ≥ 1 can be presented as d = qΔ(v), with v Є Zn , if and only if d is not of the form 4a(16 · b + 14), where a and b are non-negative integers.
EN
By computer algebra technique and computer computations, we solve the mesh morsification problems 1.10 and present a classification of irreducible mesh roots systems, for some of the simply-laced Dynkin diagramsΔ ∈ {An,Dn, E6, E7,E8}. The methods we use show an importance of computer algebra tools in solving difficult modern algebra problems of enough high complexity that had no solution by means of standard theoretical tools only. Inspired by results of Sato [Linear Algebra Appl. 406(2005), 99-108] and a mesh quiver description of indecomposable representations of finite-dimensional algebras and their derived categories explained in [London Math. Soc. Lecture Notes Series, Vol. 119, 1988] and [Fund. Inform. 109(2011), 425-462] (see also 5.11), given a Dynkin diagram Δ, with n vertices and the Euler quadratic form qΔ : Zn → Z, we study the set MorΔ ⊆ Mn(Z) of all morsifications of qΔ [37], i.e., the non-singular matrices A ∈ Mn(Z) such that its Coxeter matrix CoxA := −A · A−tr lies in Gl(n, Z) and qΔ(v) = v · A · vtr, for all v ∈ Zn. The matrixWeyl groupWΔ (2.13) acts on MorΔ and the determinant detA ∈ Z, the order cA ≥ 2 of CoxA (i.e. the Coxeter number), and the Coxeter polynomial coxA(t) := det(t ·E−CoxA) ∈ Z[t] are WΔ-invariant. Moreover, the finite set RqΔ = {v ∈ Zn; qΔ(v) = 1} of roots of qΔ is CoxA- invariant. The following problems are studied in the paper: (a) determine the WΔ-orbits Orb(A) of MorΔ and the set CPolΔ = {coxA(t); A ∈ MorΔ}, (b) construct a finite minimal CoxA-mesh quiver in Zn containing all CoxA-orbits of the finite set RqΔ of roots of qΔ. We prove that CPolΔ is a finite set and we construct algorithms allowing us to solve the problems for the morsifications A = [aij ] ∈ MorΔ, with |aij | ≤ 2. In this case, by computer algebra technique and computer computations, we prove that, for n ≤ 8, the number of the WΔ-orbits Orb(A) is at most 6, sΔ := |CPolΔ| ≤ 9 and, given A,A′ ∈ MorΔ and n ≤ 7, the following three conditions are equivalent: (i) A′ = Btr · A · B, for some B ∈ Gl(n, Z), (ii) coxA(t) = coxA′ (t), and (iii) cA · detA = cA′ · detA′. We also show that sΔ equals 6, 5, and 9, if Δ is the diagram E6, E7, and E8, respectively.
EN
Following the spectral Coxeter analysis of matrix morsifications for Dynkin diagrams, the spectral graph theory, a graph coloring technique, and algebraic methods in graph theory, we continue our study of the category UBigrn of loop-free edge-bipartite (signed) graphs ∆, with n > 2 vertices, by means of the Coxeter number oa, the Coxeter spectrum specc∆ of ∆, that is, the spectrum of the Coxeter polynomial cox∆(t) ∈ Z[t] and the Z-bilinear Gram form b∆ : Zn x Zn →Z of ∆ [SIAM J. Discrete Math. 27(2013)]. Our main inspiration for the study comes from the representation theory of posets, groups and algebras, Lie theory, and Diophantine geometry problems. We show that the Coxeter spectral classification of connected edge-bipartite graphs A in UBigrn reduces to the Coxeter spectral classification of rational matrix morsifications A ∈ MorD∆ for a simply-laced Dynkin diagram D∆ associated with ∆. Given ∆ in UBigrn, we study the isotropy subgroup Gl(n, Z)∆ of Gl(n, Z) that contains the Weyl group W∆. and acts on the set Mor∆ of rational matrix morsifications A of ∆ in such a way that the map A → (speccA, det A, c∆) is Gl(n, Z)∆-invariant. It is shown that, for n < 6, specc∆ is the spectrum of one of the Coxeter polynomials listed in Tables 3.11-3.11(a) (we determine them by computer search using symbolic and numeric computation). The question, if two connected positive edge-bipartite graphs ∆, ∆' in UBigrn, with specc∆= specc∆,, are Z-bilinear equivalent, is studied in the paper. The problem if any Z-invertible matrix A ∈ Mn(Z) is Z-congruent with its transpose Atr is also discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.