Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  WRF
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Polluted air is dangerous to human life and health. Particulate matter, among others PM10, is one of the most harmful substances. In Małopolska and its capital Kraków, the concentrations of harmful substances often exceed the standards set by the World Health Organization. Kraków, thanks to the ban on residential heating with solid fuels, has significantly reduced emissions of pollution, but they remain high in the remaining part of the region, affecting air quality in the capital as well. With the frequent occurrence of high concentrations of pollutants, in addition to the necessary measures aimed at reducing emissions, forecasting of air pollutant concentrations is needed to inform the population if normative concentrations are likely to be exceeded. The FAPPS (Forecasting of Air Pollution Propagation System), based on the AROME/MM5/CALMET/ CALPUFF model ensemble, has been operating in Małopolska since 2014 and has been used to create pollution concentration forecasts for Kraków and Małopolska. In this study, the influence of emissions from point sources on air quality in Małopolska was investigated based on the results of modelling with this system. Modelling results indicate that this influence is negligible. The quality of PM10 forecasts for four versions of the FAPPS system, differing in the meteorological model used – MM5 (Fifth-Generation Penn State/NCAR Mesoscale Model) or WRF (Weather Research and Forecasting) and the emission input (2015 emissions from the Małopolska Marshal’s Office, updated with data from the City of Kraków for 2018, or the 2020 emission inventory from the Central Emission Database) was tested. The quality of forecasts was assessed based on the results of measurements at the 22 air pollution monitoring stations for three smog episodes that occurred on 11–17.11.2021, 11–15.12.2021 and 13–18.03.2022. The best results for Kraków were obtained using an approach based on the WRF model and the emission inventory from the Central Emission Database, for which an RMSE (Root Mean Square Error) value of 30.02 µg/m3 was obtained for selected episodes. In the case of Małopolska, the lowest RMSE value (33.58 µg/m3 ) was obtained for the system using the emission inventory obtained from the Marshal’s Office and the WRF model. First tests indicate that changing the meteorological model from MM5 to WRF can lead to improved modelling results, but further research is needed to confirm it.
PL
Zanieczyszczone powietrze jest niebezpieczne dla ludzkiego życia i zdrowia. Pyły zawieszone, wśród nich PM10, to jedne z najbardziej szkodliwych substancji. W Małopolsce i jej stolicy Krakowie stężenia szkodliwych substancji często przekraczają normy ustalone przez Światową Organizację Zdrowia. Kraków dzięki zakazowi ogrzewania mieszkań za pomocą paliw stałych ograniczył w znacznym stopniu emisję zanieczyszczeń, jednakże emisja w pozostałej części regionu jest wysoka, wpływając na jakość powietrza także w jej stolicy. W sytuacji częstego występowania wysokich stężeń zanieczyszczeń, oprócz koniecznych działań ograniczających emisje, potrzebne jest też prognozowanie wysokości stężeń zanieczyszczeń powietrza, aby informować ludność o możliwości wystąpienia przekroczeń poziomu stężeń normatywnych. W Małopolsce od 2014 r. działa system FAPPS (Forecasting of Air Pollution Propagation System) oparty o zespół modeli AROME/MM5/ CALMET/CALPUFF, który jest wykorzystywany do tworzenia prognoz stężeń zanieczyszczeń dla Krakowa i Małopolski. W niniejszej pracy na podstawie wyników modelowania tym systemem zbadano, czy emisja ze źródeł punktowych może mieć znaczący wpływ na poziom stężeń PM10 na terenie Małopolski. Wyniki modelowania wskazują, że ten wpływ jest pomijalny. W pracy testowano także jakość prognoz PM10 dla czterech wersji systemu FAPPS, różniących się zastosowanym modelem meteorologicznym – MM5 (Fifth-Generation Penn State/NCAR Mesoscale Model) lub WRF (Weather Research and Forecasting) oraz wsadem emisyjnym (emisja z 2015 r. z małopolskiego urzędu marszałkowskiego, uaktualniona o dane z Urzędu Miasta Krakowa dla 2018 r., albo inwentaryzacja emisji z 2020 r. z Centralnej Bazy Emisji). Jakość prognoz oceniano na podstawie wyników pomiarów na stacjach GIOŚ dla trzech epizodów smogowych, które miały miejsce w dniach 11–17.11.2021 r., 11–15.12.2021 r. i 13–18.03.2022 r. Najlepsze wyniki dla miasta Krakowa uzyskano, stosując podejście oparte na modelu WRF i inwentaryzacji emisji z Centralnej Bazy Emisji, dla której dla wybranych epizodów uzyskano wartość RMSE (Root Mean Square Error – średni błąd kwadratowy) równą 30,022 µg/m3 . W przypadku Małopolski najmniejszą wartość RMSE (33,579 µg/m3 ) uzyskano dla systemu używającego inwentaryzacji emisji uzyskanej z małopolskiego urzędu marszałkowskiego i modelu WRF. Pierwsze testy wskazują, że zmiana modelu meteorologicznego z MM5 na WRF może przynieść poprawę wyników modelowania, jednak konieczne są dalsze badania.
EN
Precise simulations of severe weather events are a challenge in the era of changing climate. By performing simulations correctly and accurately, these phenomena can be studied and better understood. In this paper, we have verified how different initial and boundary conditions affect the quality of simulations performed using the Weather Research and Forecasting Model (WRF). For our analysis, we chose a derecho event that occurred in Poland on 11 August 2017, the most intense and devastating event in recent years. High-resolution simulations were conducted with initialization at 00 and 12 UTC (11 August 2017) using initial and boundary conditions derived from the four global models: Global Forecast System (GFS) from the National Centers for Environmental Prediction (NCEP), Integrated Forecast System (IFS) developed by the European Center for Medium-Range Weather Forecasts (ECMWF), Global Data Assimilation System (GDAS) and ERA5. For the last, we made separate calculations using data at the pressure and model levels. The results were evaluated against surface and radar data. We found that the simulations that used data from the GDAS and GFS models at 12 UTC were the more accurate, while ERA5 gave the worst predictions. However, all models were characterized by a low probability of detection and a high number of false alarms for simulations of extreme precipitation and wind gusts.
EN
Natural emissions of volatile organic compounds (VOCs), especially from terrestrial plants, have significant effects on the atmospheric chemical composition and physical characteristics. They take part in the formation of new compounds, including secondary pollutants such as tropospheric ozone, as they are highly reactive and their residence time in air is relatively short. For this reason, a reliable inventory of biogenic volatile organic compounds (BVOCs) emission is of significant importance in regional air quality modelling and assessment. In the paper, the preliminary studies on the BVOCs emission in Poland were presented, with the use of the MEGAN v2.1 (Model of Emissions of Gases and Aerosols from Nature) empirical emission model driven with meteorological fields generated in the WRF v3.8 (Weather Research and Forecasting) model. The estimation of volatile organic compounds emission from vegetation in the area of Poland for July 2015 was carried out at spatial resolution of 4 km based on default 16 global PFTs (Plant Functional Types) and emission factors distributions. BVOCs emission inventories were divided into three main groups: isoprene, monoterpenes and other volatile organic compounds (OVOCs). Their total estimated emission rates, spatial distributions and daily variability were analysed. The results of the study will define directions of further research on the BVOCs emission in the area of Poland and possibilities to improve their assessment.
PL
Naturalne emisje lotnych związków organicznych (LZO), w szczególności z roślinności lądowej, mają znaczący wpływ na skład chemiczny i właściwości fizyczne atmosfery. Ze względu na ich dużą reaktywność i stosunkowo krótki czas przebywania w powietrzu uczestniczą one w tworzeniu nowych związków, w tym wtórnych zanieczyszczeń, takich jak ozon troposferyczny. Z tego powodu wiarygodna inwentaryzacja emisji biogenicznych lotnych związków organicznych (BLZO) ma niepomijalne znaczenie w regionalnym modelowaniu i ocenie jakości powietrza. W pracy przedstawiono wstępne badania nad emisją BLZO w Polsce z wykorzystaniem modelu empirycznego MEGAN v2.1 (Model of Emissions of Gases and Aerosols from Nature) i pól meteorologicznych pochodzących z modelu WRF v3.8 (Weather Research and Forecasting). Emisję lotnych związków organicznych z wegetacji na terenie Polski w lipcu 2015 roku oszacowano w siatce o rozdzielczości przestrzennej 4 km, wykorzystując domyślne 16 globalnych klas PFT (Plant Functional Types) i przestrzenne rozkłady wskaźników emisji. Inwentaryzację emisji BLZO podzielono na trzy główne grupy związków: izopren, monoterpeny oraz pozostałe lotne związki organiczne. Analizie poddano całkowitą wielkość emisji powyższych związków, rozkłady przestrzenne oraz ich zmienność dobową. Wyniki badań określą kierunki dalszych badań nad emisjami BLZO na terenie Polski oraz wskażą możliwości poprawy wiarygodności ich oszacowania.
EN
In this study, we used boundary layer heights derived from lidar in Romania to validate the Weather Research Forecast (WRF) model improved by ARIA Technologies SA in the framework of ROMAIR LIFE project. Lidar retrievals were also compared to the retrievals from meteorological data, both modeled (Global Data Assimilation System; GDAS) and measured (microwave radiometry). Both the gradient and the wavelet covariance methods were used to compute the boundary layer height (BLH) from the range corrected lidar signal, and their equivalence was shown. The analysis was performed on 102 datasets, spread over all seasons and 3 years (2009-2011). A good agreement was found for the remote sensors (lidar and microwave radiometer) which are co-located and measure simultaneously. The correlation of the measured boundary layer height and the modelled one was 0.66 for the entire dataset, and 0.73 when considering daytime data, i.e., for a well defined boundary layer. A systematic underestimation of the boundary layer height by the WRF during non-convective periods (nocturne, stable atmosphere) was found.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.