Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  WC tool
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Evaluation of an AICrN coated FSW tool
EN
Purpose: This paper aims to evaluate the wear performance of a physical vapor deposition (PVD) coating on cemented carbide (WC) tool used in friction stir welding FSW processing of Ti alloy sheets. Design/methodology/approach: A coating of AlCrN material was applied to a WC tool in order to increase its wear resistance, thermal shock stability and hot hardness. In comparison to the conventional coatings, the AlCrN coating system had a higher resistance to abrasive wear as well as higher hot hardness and oxidation resistance. FSW processing of Ti with a coated WC tool was expected to have better performance than an uncoated tool. Back Scattering Electron (BSE) imaging mode at scanning electron microscope was used to determine the main mechanism of tool wear, which was found to be hot adhesion and inter-diffusion of tool constituents with the workpiece materials. Findings: The tool degradation was evaluated by scanning electron microscopy in order to observe the main tool wear mechanism. The real contribution of the (Al,Cr)N coating layer could not be correctly evaluated, since there is no residual trace of its components at the worn tool. What was probably found left from the coating layer was the N component which formed the nitride TiN observed by EDS mapping. The parameter conditions were probably too severe, overcoming the layer limit strength. Research limitations/implications: The research were carried out as a preliminary evaluation and this initial results in the need of a further analysis that should be performed looking for a suitable tool material and coating optimization for the FSW processing of titanium alloys. Practical implications: Despite being successfully used in other manufacturing applications like machining operations in which friction and temperature are also high, the WC tool material and the coating had an unsatisfactory wear resistance, and the AlCrN coating was totally worn during the FSW processing. This suggests that new materials and coatings are still needed for FSW tools. Originality/value: FSW process is gaining importance as an industrial joining method, but the tool wear is still an important challenge to achieve efficient and economic operation. Because of the low thermal conductivity and high chemical reactivity of Ti, tools wear rapidly due to high temperature and strong adhesion. In order to achieve higher processing speeds, reducing heat at the interface tool/work material is required, as is the use of tool materials that have little or no chemical affinity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.