The study aimed to examine the use of Geomagnetic Anomaly Detection (GAD) to locate the buried ferromagnetic pipeline defects without exposing them. However, the accuracy of GAD is limited by the background noise. In the present work, we propose an approximate entropy noise suppression (AENS) method based on Variational Mode Decomposition (VMD) for detection of pipeline defects. The proposed method is capable of reconstructing the magnetic field signals and extracting weak anomaly signals that are submerged in the background noise, which was employed to construct an effective detector of anomalous signals. The internal parameters of VMD were optimized by the Scale–Space algorithm, and their anti-noise performance was compared. The results show that the proposed method can remove the background noise in high-noise background geomagnetic field environments. Experiments were carried out in our laboratory and evaluation results of inspection data were analysed; the feasibility of GAD is validated when used in the application to detection of buried pipeline defects.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Enhancement of speech signal and reduction of noise from speech is still a challenging task for researchers. Out of many methods signal decomposition method attracts a lot in recent years. Empirical Mode Decomposition (EMD) has been applied in many problems of decomposition. Recently Variational Mode Decomposition (VMD) is introduced as an alternative to it that can easily separate the signals of similar frequencies. This paper proposes the signal decomposition algorithm as VMD for denoising and enhancement of speech signal. VMD decomposes the recorded speech signal into several modes. Speech contaminated with different types of noise is adaptively decomposed into various components is said to be Intrinsic Mode Functions (IMFs) by shifting process as in Empirical Mode decomposition (EMD) method. Next to it the denoising technique is applied using VMD. Each of the decomposed modes is compact. The simulation result shows that the proposed method is well suited for the speech enhancement and removal of noise by restoring the original signal.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.