Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  UNB3m model
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents research results on the determination of meteorological parameters utilising the GPS satellite technique. The meteorological parameters were designated using Standard Atmosphere (SA) and UNB3m empirical models. The research experiment was realised during a flight test at the Dęblin military aerodrome. In the flight test, the Cessna 172 plane was used. The values of meteorological parameters (for example, temperature, pressure and relative humidity) from the troposphere empirical models were presented and compared in the paper. In addition, the values of the meteorological parameters were estimated at flight attitude. The range of the flight attitude was between 150 and 700 m. The precision position of the aircraft in vertical frame was determinated using the RTK-OTF differential technique. The mean difference of temperature between the SA and UNB3m models is equal to -5.7°C with the RMS bias approximately 0.2°C. The mean difference of pressure between the SA and UNB3m models equals -1.0 hPa with the RMS bias of approximately 0.3 hPa. The mean difference of relative humidity between the SA and UNB3m models equals 25.5%, with the RMS bias approximately 0.6%. On paper, the values of meteorological data from the SA and UNB3m models were compared with true results interpolated from SYNOP message. In research, the three SYNOP stations, that is, Kozienice, Deblin/Irena and Lublin Radawiec were used for interpolation of the real meteorological data. The difference between empirical and interpolated meteorological data were presented in this paper. The accuracy of the designation of temperature is better in the SA model rather than the UNB3m model. The accuracy of the designation of pressure was relatively low in both models, SA and UNB3m. On the other hand, the accuracy of the designation of relative humidity was better in the UNB3m model than the SA model.
EN
Tropospheric delay is the second major source of error after the ionospheric delay for satellite navigation systems. The transmitted signal could face a delay caused by the troposphere of over 2m at zenith and 20m at lower satellite elevation angles of 10 degrees and below. Positioning errors of 10m or greater can result from the inaccurate mitigation of the tropospheric delay. Many techniques are available for tropospheric delay mitigation consisting of surface meteorological models and global empirical models. Surface meteorological models need surface meteorological data to give high accuracy mitigation while the global empirical models need not. Several hybrid neutral atmosphere delay models have been developed by (University of New Brunswick, Canada) UNB researchers over the past decade or so. The most widely applicable current version is UNB3m, which uses the Saastamoinen zenith delays, Niell mapping functions, and a look-up table with annual mean and amplitude for temperature, pressure, and water vapour pressure varying with respect to latitude and height. This paper presents an assessment study of the behaviour of the UNB3m model compared with highly accurate IGS-tropospheric estimation for three different (latitude/height) IGS stations. The study was performed over four nonconsecutive weeks on different seasons over one year (October 2014 to July 2015). It can be concluded that using UNB3m model gives tropospheric delay correction accuracy of 0.050m in average for low latitude regions in all seasons. The model's accuracy is about 0.075m for medium latitude regions, while its highest accuracy is about 0.014m for high latitude regions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.