Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  UDC cycle
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W niniejszym artykule przedstawiono wynik badania jednostkowego zużycia energii. Obiektem badań był pojazd elektryczny po konwersji napędu. Wyniki badania porównano z innymi pojazdami opisywanymi w literaturze naukowej.
EN
This paper presents result of specific energy consumption test. The object of the study was an electric vehicle after the drive conversion. The results were compared with other vehicles described in the scientific literature.
EN
The paper presents a comparative analysis of the instantaneous fuel consumption of a FIAT Panda vehicle equipped with a 1.3 JTD MultiJet compression ignition engine with Common Rail fuel system. Different types of propulsion system were taken into consideration (engine positioned front-lengthwise to the direction of travel and rear-wheel drive, engine positioned front-transversely to the direction of travel and front-wheel drive, and all-wheel drive). The method for determining the instantaneous fuel consumption was based on an experimental part where the load characteristics were established (relationship between specific fuel consumption and engine torque). It was carried out for the steady states of these parameters corresponding to specific traffic conditions that represent the resistance to motion, i.e. rolling resistance and air resistance. Technical and operating characteristics of a vehicle and its design features, such as maximum weight, transmission system ratios, dynamic wheel radius, drag coefficient, width and height, and efficiency of propulsion system, had a significant impact on their individual contribution. The efficiency of transmission was adopted from a simulation for different types of propulsion system. It was important in determination of the value of instantaneous fuel consumption for constant vehicle velocities used in the UDC test (Urban Driving Cycle – subtest of the EUDC cycle). The lowest fuel consumption for a given speed of a car occurred for the front-wheel drive transmission system, whereas the highest for the all-wheel drive system (4x4).
EN
The aim of this study was to compare instantaneous fuel consumption of a FIAT Panda car with three types of propulsion system applied: engine positioned front-lengthwise to the direction of travel and rear-wheel drive, engine positioned front-transversely to the direction of travel and front - wheel drive and all-wheel drive. The vehicle was equipped with a 1.3 JTD MultiJet compression-ignition engine being used for conducting experimental tests. This part was based on making the load characteristics (relationship between specific fuel consumption and engine torque) using engine dynamometer. This was made for given parameters corresponding to specific traffic conditions. They were determined in a simulation and were represented by rolling resistance and air resistance. Their value was affected by vehicle technical and operating characteristics and its design features, such as maximum weight, transmission system ratios, dynamic wheel radius, drag coefficient, width and height, and efficiency of propulsion system. The efficiency of power train system was adopted from a simulation conducted for different types of propulsion system. Apart from basic resistance, additional drag (inertia resistance) was the most important in vehicle energy balance. It played an important role in determining the value of instantaneous fuel consumption for variable velocity and constant acceleration values used in the UDC test (Urban Driving Cycle – subtest of the EUDC cycle). The lowest fuel consumption for a given car velocity was for front-wheel drive transmission system, whereas the highest for allwheel drive system (4x4).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.