Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Tungsten Inert Gas
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The most common gas-shielded arc welding method is tungsten inert gas welding, which uses shielding gas to isolate the welded area. Such technique is mostly used in the industrial domain, including steel framework fabrication and installation, plumbing systems, and other building jobs. The welding method and the implementation of a suitable welding joint based on some factors that contribute to the fusion process were studied in the present research. The research investigated the specifications and efficiency of the area to be welded in terms of the thermal effect on the welding joint shape and some significant mechanical property-related factors which that were determined during the welding process. In this paper, aluminum alloy sheets, AA 6061-T6, with a thickness of 3 mm, were used with a 60mm width and 80mm length. These sheets were prepared to be welded using welding currents of 90A, 95A, and 100A, welding speeds of 60mm/min, 80 mm/min, and100 mm/min, and gas flow rates of 8 l/min, 9 l/min, and 10 l/min. The experiments were designed at three distinct levels. These levels were selected to create the L9 orthogonal array. Regression analysis, signal-to-noise ratio evaluation, and analysis of variance were carried out. The created model has enhanced accuracy by predicting the reinforced hardness found in the weld specimens, according to the regression study, which showed R2= 90.09%. In addition, it was discovered that the ideal welding parameters for a welded specimen were 100 A for welding current, 80 mm/min for welding speed, and 9 l/min for gas flow. The present research examined the shape of the thermal distribution of welded parts using the engineering computer program ANSYS. The experimental results clarified the proposed approach, as they showed that the welding current is the most influential factor in the hardness of the weld using the fusion process of 90.95%, followed by the welding speed of 7.48%, while the gas flow rate of 1.52% has the least effect. The authors recommend using qualified welders to ensure optimal performance. It is anticipated that these findings will serve as a foundation for analysis to optimize welding processes and reduce welding defects.
2
Content available remote Multi-layers castings
EN
In paper is presented the possibility of making of multi-layers cast steel castings in result of connection of casting and welding coating technologies. First layer was composite surface layer on the basis of Fe-Cr-C alloy, which was put directly in founding process of cast carbon steel 200-450 with use of preparation of mould cavity method. Second layer were padding welds, which were put with use of TIG - Tungsten Inert Gas surfacing by welding technology with filler on Ni matrix, Ni and Co matrix with wolfram carbides WC and on the basis on Fe-Cr-C alloy, which has the same chemical composition with alloy, which was used for making of composite surface layer. Usability for industrial applications of surface layers of castings were estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.
3
Content available remote Methods of improvement in hardness of composite surface layer on cast steel
EN
The paper presents a method of usable properties of surface layers improvement of cast carbon steel 200–450, by put directly in founding process a composite surface layer on the basis of Fe-Cr-C alloy and next its remelting with use of welding technology TIG – Tungsten Inert Gas. Technology of composite surface layer guarantee mainly increase in hardness and abrasive wear resistance of cast steel castings on machine elements. This technology can be competition for generally applied welding technology (surfacing by welding and thermal spraying). However the results of studies show, that is possible to connection of both methods founding and welding of surface hardening of cast steel castings. In range of experimental plan was made test castings with composite surface layer, which next were remelted with energy 0,8 and 1,6 kJ/cm. Usability for industrial applications of test castings was estimated by criterion of hardness and abrasive wear resistance of type metal-mineral.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.