Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Transformers
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The following paper presents research on the Automatic Speech Recognition (ASR) methods for the construction of a system to automatically transcribe the medical interview in Polish language during a visit in the clinic. Performance of four ASR models based on Deep Neural Networks (DNN) was evaluated. The applied structures included XLSR-53 large, Quartznet15x5, FastConformer Hybrid Transducer-CTC and Whisper large. The study was conducted on a self-developed speech dataset. Models were evaluated using Word Error Rate (WER), Character Error Rate (CER), Match Error Rate (MER), Word Accuracy (WAcc), Word Information Preserved (WIP), Word Information Lost (WIL), Levenshtein distance, Jaro - Winkler similarity and Jaccard index. The results show that the Whisper model outperformed other tested solutions in the vast majority of the conducted tests. Whisper achieved a WER =20.84%, where XLSR-53 WER = 67.96%, Quartznet15x5 WER =76.25%, FastConformer WER = 46.30%. These results show that Whisper needs further adaptation for medical conversations, as current volume of transcription errors is not practically acceptable (too many mistakes in the description of the patient's health description).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.