Magnesium alloys have recently become increasingly popular in many sectors of the industry due to their unique properties, such as low density, high specific strength, vibration damping ability along with their recyclability and excellent machinability. Nowadays, thin films have been attracting more attention in applications that improve mechanical and corrosion properties. The following alloys were used for the coated Mg-Al-RE and the ultra-light magnesium-lithium alloy of the Mg-Li-Al-RE type. A single layer of TiO2 was deposited using the atomic layer deposition ALD method. Multiple layers of the Ti/TiO₂ and Ti/TiO₂/Ti/TiO₂ type were obtained by the MS-PVD magnetron sputtering technique. Samples were investigated by scanning and a transmission electron microscope (SEM, TEM) and their morphology was studied by an atomic forces microscope (AFM). Further examinations, including electrochemical corrosion, roughness and tribology, were also carried out. As a result of the research, it was found that the best electrochemical properties are exhibited by single TiO2 layers obtained by the ALD method. Moreover, it was found that the Ti/TiO₂/Ti/TiO₂ double film has better properties than the Ti/TiO₂ film.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
There is a high impact of the solar cells on energy manufacturing. For several years the energy efficiency was limited due to base-materials' structural and technological limits. High increase of energy harvesting of solar cells has been observed since the first solar cell based on dye-sensitized colloidal TiO₂ films occurred. One of the most promising solutions are used quantum dots (QD) for light energy conversion. In this paper, we described the use of selected characterization techniques for sandwich-type TiO₂/QD composites for a low-cost quantum dots' solar cell in the point of view of mass manufacturer of solar cells and research and development laboratory. Moreover, the increasing role of Raman spectroscopy and mapping for the TiO₂/QD was presented and compared with other necessity techniques for solar cell investigations such as ellipsometry, atomic force microscopy (AFM), and secondary ion mass spectrometry (SIMS).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.