Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Thermo-Calc
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Characteristics of the microstructure of corrosion-resistant cast 24Cr-5Ni-2.5Mo duplex steel after introduction of 0.98, 1.67 and 4.3% Si were described. Based on the test results it has been found that silicon addition introduced to the corrosion-resistant cast two-phase duplex steel significantly reduces austenite content in the alloy matrix. Increasing silicon content in the test alloy to 4.3% has resulted, in addition to the elimination of austenite, also in the precipitation of Si-containing intermetallic phases at the grain boundaries and inside the grains. The precipitates were characterized by varying content of Cr and Mo, indicating the presence in the structure of more than one type of the brittle phase characteristic for this group of materials. The simulation using Thermo-Calc software has confirmed the presence of ferrite in all tested alloys. In the material containing 4.3% Si, the Cr and Si enriched precipitates, such as G phase and Cr3Si were additionally observed to occur.
EN
The paper presents the possibility of application of the developed computer script which allows the assessment of non-equilibrium solidification of binary alloys in the ThermoCalc program. The script makes use of databases and calculation procedures of the POLY-3 module. A solidification model including diffusion in the solid state, developed by Wołczyński, is used to describe the non-equilibrium solidification. The model takes into account the influence of the degree of solute segregation on the solidification process by applying the so-called back-diffusion parameter. The core of the script is the iteration procedure with implemented model equation. The possibility of application of the presented calculation method is illustrated on the example of the Cr-30% Ni alloy. Computer simulations carried out with use of the developed script allow to determine the influence of the back-diffusion parameter on the course of solidification curves, solidus temperature, phase composition of the alloy and the fraction of each phase after the solidification completion, the profile of solute concentration in liquid during solidification process, the average solute concentration in solid phase at the eutectic temperature and many other quantities which are usually calculated in the ThermoCalc program.
EN
Among the family of stainless steels, cast austenitic stainless steels (CASSs) are preferably used due to their high mechanical properties and corrosion resistance. These steels owe their properties to their microstructural features consisting of an austenitic matrix and skeletal or lathy type δ-ferrite depending on the cooling rate. In this study, the solidification behavior of CASSs (304L and 316L grades) was studied using ThermoCalc software in order to determine the solidification sequence and final microstructure during cooling. Theoretical findings were supported by the microstructural examinations. For the mechanical characterization, not only hardness measurements but also tribological studies were carried out under dry sliding conditions and worn surfaces were examined by microscopy and 3D profilometric analysis. Results were discussed according to the type and amount of microstructural features.
EN
A general form of material balance equations to be used to calculate quasi-binary sections of multi-component phase diagrams is derived here. When this general equation is reduced to ternary systems, it coincides with those, given in the Thermo-Calc manual. For a k-component system, altogether only (k-2) such independent equations should be written from the list of k(k-1)/2 possible equations.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.