Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Talenti’s theorem
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
We deduce isoperimetric estimates for solutions of linear stationary and evolution problems. Our main result establishes the comparison in norm between the solution of a problem and its symmetric version when nonlocal diffusion defined through integrable kernels is replacing the usual local diffusion defined by a second order differential operator. Since an appropriate kernel rescaling allows to define a sequence of solutions of the nonlocal diffusion problems converging to their local diffusion counterparts, we also find the corresponding isoperimetric inequalities for the latter, i.e. we prove the classical Talenti’s theorem. The novelty of our approach is that we replace the measure geometric tools employed in Talenti’s proof, such as the geometric isoperimetric inequality or the coarea formula, by the Riesz’s rearrangement inequality. Thus, in addition to providing a proof for the nonlocal diffusion case, our technique also introduces an alternative proof to Talenti’s theorem.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.