Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  TLV
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Fosforan trifenylu (TPP) jest bezbarwnym ciałem stałym o zapachu przypominającym fenol. Znajduje zastosowanie jako plastyfikator do produkcji: żywic, wosków, klejów, oprawek okularów i kosmetyków. Fosforan trifenylu charakteryzuje się małą toksycznością ostrą po narażeniu drogą: pokarmową, inhalacyjną, skórną. Wchłanianie z przewodu pokarmowego i z miejsca wstrzyknięcia jest powolne. W badaniach na zwierzętach fosforan trifenylu nie wykazywał działania drażniącego na skórę, ale powodował podrażnienie oczu u królików. Nie wykazywał działania mutagennego oraz nie wywoływał nowotworów u zwierząt (u ludzi brak danych). Fosforan trifenylu działa ogólnoustrojowo. W 13-tygodniowym badaniu toksyczności na szczurach Wistar przerost komórek wątrobowych i zmiany morfologiczne w tarczycy obserwowano przy dawce fosforanu trifenylu 105 mg/kg mc./dzień. Za wartość NOEL dla działania ogólnonarządowego i neurotoksycznego przyjęto dawkę 20 mg/kg mc./dzień. W badaniu NTP (2018) wyznaczono dolną granicę przedziału ufności dawki referencyjnej BMDL na poziomie 39 mg/kg mc. dla skutków ogólnoustrojowych, manifestujących się zmniejszeniem poziomu wolnej tyroksyny i cholesterolu HDL. We wszystkich badanych dawkach związku, tj. >55 mg/kg mc., stwierdzono zmniejszenie aktywności cholinesterazy w surowicy o 35 ÷ 70% – nie obliczono dawki referencyjnej BMD dla tego skutku. Po dawce 200 mg/kg mc./dzień u królików wystąpił zwiększony odsetek płodów bez dodatkowych płatów płuc. Za wartość NOAEL dla toksyczności rozwojowej przyjęto dawkę 80 mg/kg mc./dzień. Przyjmując wartość NOEL, obliczono wartość najwyższego dopuszczalnego stężenia (NDS) dla fosforanu trifenylu na poziomie 10 mg/m³ . Brak podstaw do ustalenia wartości chwilowej (NDSCh) oraz dopuszczalnej w materiale biologicznym (DSB). Substancja nie spełnia kryteriów klasyfikacji pod kątem wchłaniania przez skórę. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Triphenyl phosphate (TPP) is a colorless solid with a phenol-like odor. It is used as a plasticizer in the production of resins, waxes, adhesives, spectacle frames, cosmetics. Triphenyl phosphate is characterized by low acute toxicity after oral, inhalation and dermal exposure. Absorption from the gastrointestinal tract and the injection site is slow. In animal studies, it was not irritating to the skin, caused eye irritation in rabbits. Did not show mutagenic and carcinogenic effects in animals (no data in humans). Triphenyl phosphate has a systemic effect. In a 13-week toxicity study in Wistar rats, hepatic cell hyperplasia and thyroid morphological changes were observed at a dose of 105 mg/kg bw/day. The dose of 20 mg/kg bw/day was assumed as the NOEL value (the highest level of no effect) for the organ and neurotoxic effects. In the NTP study (2018), the lower confidence limit of the BMDL reference dose was set at 39 mg/kg bw. for systemic effects, as manifested by a reduction in the level of free thyroxine and HDL cholesterol. At higher doses of the compound (>55 mg/kg), serum cholinesterase activity was inhibited by 35–70% (the BMD reference dose for this effect was not calculated). At 200 mg/kg bw/day, rabbits had an increased percentage of fetuses without additional lung lobes. The dose of 80 mg/kg bw/day was assumed as the NOAEL for developmental toxicity. Assuming the NOEL value, the value of the highest allowable concentration (NDS) for TPP was calculated at the level of 10 mg/m³ . There are no grounds to establish the instantaneous value (NDSCh) and the limit value for biological material (DSB). The substance does not meet the criteria for classification for skin absorption. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Związki chromu(VI) są ciałami stałymi o budowie krystalicznej, o zróżnicowanej rozpuszczalności w wodzie. Związki Cr(VI) są stosowane w obróbce powierzchni metalowych w celu zabezpieczenia przed korozją lub w celach dekoracyjnych (chromowanie, anodowanie), jako dodatek do stali nierdzewnej chromowej, w syntezie chemicznej jako silny środek utleniający i jako katalizator, do produkcji niektórych pigmentów, inhibitorów korozji, środków do ochrony drewna. Powstają również podczas spawania i cięcia plazmowego. Pracownicy mogą być narażeni na związki Cr(VI) w środowisku pracy drogą inhalacyjną, pokarmową i przez skórę. Na terenach uprzemysłowionych możliwe jest narażenie pozazawodowe, np. przez wodę do picia, kontakt z glebą lub innymi mediami zanieczyszczonymi tymi związkami. W Polsce w latach 2005-2018 na podstawie informacji przesłanych do Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym prowadzonego przez IMP w Łodzi w środowisku zawodowym najbardziej rozpowszechniony był dichromian(VI) potasu (zgłaszało go ponad 500 zakładów pracy, a liczba narażonych osób przekraczała 5 tys.). Ponad 1 tys. narażonych osób zgłaszano również w przypadku tlenku chromu(VI), chromianu(VI) potasu oraz innych związków chromu(VI). Zdecydowaną większość zgłoszonych do rejestru stanowisk pracy, na których występowały związki Cr(VI), stanowiły stanowiska laboratoryjne (75%), ponad 10% stanowiska pracy związane z galwanizacją lub trawieniem powierzchni, a około 4% stanowiska spawaczy. W 2018 r. rozporządzeniem MRPiPS wprowadzono dla wszystkich związków Cr(VI) wartość NDS wynoszącą 0,01 mg/m³. W 2019 r. zgodnie z danymi GIS na stężenia >0,1 NDS ÷ 0,5 NDS było narażonych 640 pracowników, >0,5 NDS ÷ NDS – 146 pracowników, a powyżej wartości NDS – 48 pracowników. Przewlekłe narażenie zawodowe na związki Cr(VI) może powodować skutki związane ze żrącym i drażniącym działaniem tych substancji (zmiany skórne, objawy ze strony dróg oddechowych, zaburzenia funkcji nerek) oraz wystąpienie raka płuca i zatok przynosowych. Okres latencji wystąpienia raka płuca u pracowników narażonych zawodowo na związki Cr(VI) wynosi około 20 lat. U ludzi dowody działania związków Cr(VI) na rozrodczość są niejednoznaczne, chociaż są badania wskazujące na ryzyko zmniejszenia jakości nasienia, które odnotowano w grupie spawaczy. Przy ustalaniu wartości NDS za skutek krytyczny działania związków Cr(VI) przyjęto działanie rakotwórcze na płuca. Dla związków Cr(VI) przyjęto wartość NDS na poziomie 0,005 mg Cr(VI)/m³ bez ustalenia wartości chwilowej NDSCh. Zaproponowana wartość NDS 0,005 mg Cr(VI)/m³ zabezpieczy pracowników również przed działaniem drażniącym związków Cr(VI) obecnych w powietrzu środowiska pracy. Przyjęto następujące oznakowanie związków Cr(VI): Carc.*, Muta.*, Ft (Repr.)*, C(r-r)*, I* oraz A*, których kategorię należy ustalić zgodnie z tabelą 3. załącznika VI do rozporządzenia Parlamentu Europejskiego i Rady WE nr 1272/2008 z dnia 16 grudnia 2008 r. (Dz. Urz. WE L 353, 1-1355 z późn. zm.).
EN
Chromium (VI) compounds are solids with a crystalline structure of varying solubility in water. Chromium (VI) compounds are used in the treatment of metal surfaces to protect against corrosion or for decorative purposes (chrome plating, anodizing), as an additive to chrome stainless steel, in chemical synthesis as a strong oxidizing agent and as a catalyst, for the production of certain pigments, inhibitors corrosion, wood preservatives. They are also formed during welding and plasma cutting. Workers can be exposed to Cr(VI) compounds in the working environment by inhalation, oral and dermal route. In industrialized areas, non-occupational exposure, e.g., through drinking water, contact with soil or other media contaminated with these compounds is possible. In Poland, in 2005-2018, based on information sent to the Central Registry conducted by the Nofer Institute of Occupational Medicine in Łódź, the most common was potassium dichromate (VI) (it was reported by over 500 workplaces, and the number of exposed people exceeded 5,000). Over one thousand exposed persons have been reported for chromium (VI) oxide, potassium chromate (VI) and other chromium (VI) compounds. The vast majority of workplaces with chromium (VI) compounds reported to the register were laboratory stands (75%), over 10% of workplaces related to electroplating or surface etching, and about 4% were welders. In 2018, the regulation of ministry introduced a TLV (MAC) value of 0.01 mg/mᶾ for all chromium(VI) compounds. In 2019, according to Sanitary Inspection data, 640 workers were exposed to concentrations > 0.1 MAC ÷ 0.5 MAC, > 0.5 MAC ÷ MAC – 146 workers, and above the MAC value – 48 workers. Chronic occupational exposure to chromium (VI) compounds may cause effects related to the corrosive and irritating action of these substances (skin lesions, respiratory symptoms, renal dysfunction) and the occurrence of lung cancer and paranasal sinuses. The latency period for lung cancer in workers who are occupationally exposed to Cr(VI) compounds is approximately 20 years. In humans, evidence of the effects of chromium (VI) compounds on reproduction is inconclusive, although there are studies showing a risk of reduced semen quality, which has been reported in the group of welders. Lung carcinogenicity was assumed as a critical effect of Cr(VI) compounds when establishing the MAC value. For chromium (VI) compounds, the MAC value was assumed at the level of 0.005 mg Cr(VI)/m³ without establishing the short-term (STEL, NDSCh) value. The proposed MACV value of 0.005 mg Cr(VI)/m³ will also protect employees against the irritating effects of chromium(VI) compounds present in workplace air. The following labeling of chromium (VI) compounds has been adopted: Carc.*, Muta.*, Ft (Repr.)*, C (rr)*, I* and A*, the category of which should be determined in accordance with table 3 of Annex VI to the Regulation of the European Parliament and EC Council No. 1272/2008 of December 16, 2008 (OJEU L 353, 1-1355 as amended).
PL
Kadm (Cd) jest białym metalem o niebieskawym odcieniu. Tworzy szereg związków, występując w nich wyłącznie w 2+ stopniu utlenienia. Związki kadmu są w różnym stopniu rozpuszczalne w wodzie. Do grup największego ryzyka zalicza się pracowników zatrudnionych przy produkcji: akumulatorów niklowo-kadmowych, stopów, pigmentów kadmowych, barwieniu tworzyw sztucznych pigmentami, a także pracowników hut metali nieżelaznych oraz spawaczy tnących metale powleczone antykorozyjną warstwą kadmu. Według danych Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym w Polsce na kadm i jego związki było narażonych 4 276 pracowników. Kadm ulega wchłanianiu do organizmu drogą wziewną i pokarmową. U ludzi wchłanianie wynosi odpowiednio: 2 ÷ 50% i 4 ÷ 6%. Eliminacja kadmu z organizmu jest procesem powolnym. Szacowane okresy półtrwania kadmu wynoszą od 5 do 30 lat. Wyniki badań przeprowadzonych u osób narażonych na kadm w środowisku pracy wykazały, że stężenie progowe kadmu w moczu, przy którym stwierdzono wzmożone wydalanie w moczu białek niskocząsteczkowych, wynosiło 5 ÷ 10 µg/g kreatyniny. Międzynarodowa Agencja Badań nad Rakiem (IARC) uznała w 1993 r. kadm za czynnik rakotwórczy dla ludzi (grupa 1.). Wyniki badań eksperymentalnych na szczurach dostarczyły dowodów na rakotwórcze działanie kadmu w wyniku narażenia inhalacyjnego. Kadm jest uznany przez SCOEL za czynnik rakotwórczy kategorii zagrożenia C (czyli jako genotoksyczny czynnik rakotwórczy), dla którego można określić próg (stężenie) działania, zwany również progiem praktycznym. Narządami krytycznymi toksycznego działania kadmu i jego związków nieorganicznych u ludzi (w zależności od drogi narażenia – pokarmowa, inhalacyjna) są nerki, płuca oraz prawdopodobnie kości. Skutkiem krytycznym w przypadku działania kadmu na nerki jest wzmożone wydalanie w moczu białek niskocząsteczkowych, natomiast skutkiem krytycznym w przypadku działania na płuca jest działanie rakotwórcze związku. Jako podstawę do zaproponowania wartości najwyższego dopuszczalnego stężenia (NDS) dla frakcji wdychalnej kadmu i jego związków przyjęto wyniki badań inhalacyjnych na szczurach narażanych na kadm o stężeniach: 30; 13,4 lub 10 µgCd/m³ przez 18 miesięcy. Stężenie 10 µg Cd/m³ przyjęto jako wartość NOAEL. Po podstawieniu do wzoru i uwzględnieniu współczynników niepewności o łącznej wartości 10 ustalono stężenie 0,001 mg/m³ (1 µg Cd/m³ ) jako wartość NDS dla frakcji wdychalnej. Monitoring biologiczny jest najlepszym wskaźnikiem narażenia na kadm. Wydalanie kadmu z moczem umożliwia ocenę wielkości kumulacji związku w ustroju oraz uwzględnia wszystkie źródła narażenia na kadm, w tym skażonej żywności i palenia tytoniu, natomiast stężenie kadmu we krwi stanowi marker aktualnego narażenia. Dotychczasowe wartości DSB we krwi i w moczu wynosiły odpowiednio 5 μg Cd/l i 5 μg Cd/g kreatyniny. Po dyskusji na 91. posiedzeniu Międzyresortowej Komisji ds. NDS i NDN wartości te pozostawiono jako obowiązujące. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Cadmium (Cd) is a white metal with a bluish tint. It forms a number of compounds occurring in them on the degree of oxidation 2+. Cadmium compounds are water-soluble to varying degrees. The highest risk groups include employees involved in the production of nickel-cadmium batteries, alloys, cadmium pigments as well as employees of non-ferrous metal smelters and cutting welders of metals covered with a cadmium anti-corrosion layer. According to the Central Register of Data on Exposure to Substances , Preparations, Factors or Technological Processes on Carcinogenic or Mutagenic Action, 4276 workers in Poland were exposed to cadmium and its compounds. Cadmium is absorbed into the body through inhalation and digestive systems. In humans, the absorption is 2–50% and 4–6%, respectively. Elimination of cadmium from the body is a slow process. The estimated half-life of cadmium is from 5 to 30 years. Results of studies conducted in subjects exposed to cadmium in the work environment showed that the threshold concentration of cadmium in urine, at which increased excretion of low molecular weight proteins in urine was found, is 5–10 µg/g creatinine. In 1993, IARC identified cadmium and its compounds as a human carcinogen (group 1). The results of experimental studies in rats provided evidence of cadmium carcinogenicity as a result of inhalation exposure. Cadmium is recognized by SCOEL as a category C carcinogen, i.e. as a genotoxic carcinogen for which a threshold of action (concentration) can be determined, also called a practical threshold. The critical organs for the toxic effects of cadmium and its inorganic compounds in humans, depending on the route of exposure, are kidneys, lungs and possibly bones. The critical effect of cadmium on kidneys is increased excretion of low molecular weight proteins in urine, while the critical effect on lungs is the carcinogenic effect. Inhalation studies in rats exposed to cadmium at concentrations of 30 µgCd/m³ , 13.4 µgCd/m³ and 10 µgCd/m³ for 18 months were used as the basis to propose TLV-TWA. The concentration of 10 µg Cd/m³ was taken as the NOAEL value. After applying the formula and taking into account the uncertainty factors with a total value of 10, the concentration of 0.001 mg/m3 (1 µgCd/m³ ) was determined as the TLV-TWA value for the inhaled fraction. Biological monitoring is the µgCd/m³ ) was determined as the TLV-TWA value for the inhaled fraction. Biological monitoring is the best indicator of cadmium exposure. The excretion of cadmium in urine enables the assessment of cumulative cadmium in the body and takes into account all sources of cadmium exposure, including contaminated food and smoking, while the blood cadmium concentration is a measure of current exposure. Previous BEI values in blood and urine were 5 μgCd/l and 5 μgCd/g creatinine, respectively. After discussion at the 91st meeting of the Interministerial Committee for TLVs and PELs, these values were maintained as mandatory. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
4
Content available Uwodornione terfenyle
PL
Uwodornione terfenyle (C6Hn)3 są mieszaniną izomerów orto-, meta- i para-terfenyli o różnym stopniu uwodornienia. Uwodornione terfenyle są używane jako: smary, hydrauliczne płyny chłodzące, chłodziwo w reaktorach atomowych, rozpuszczalniki barwników stosowanych do otrzymywania bezwęglowego papieru kopiującego oraz do produkcji takich tworzyw sztucznych, jak polichlorek winylu. Uwodornione w 40% terfenyle (HB-40) należą do substancji nietoksycznych w warunkach narażenia ostrego. Medialne dawki śmiertelne (LD50) po podaniu do żołądka szczurów wynoszą, w zależności od techniki podania substancji, od 10 200 mg/kg (do przełyku) do 17 500 mg/kg (cewnikiem bezpośrednio do żołądka). Medialne stężenie śmiertelne (LC50) HB-40 dla szczurów wynosi 11 100 mg/m3 po 4 h narażenia na aerozol tego związku. Nie stwierdzono mutagennego, genotoksycznego ani rakotwórcze-go działania uwodornionych terfenyli w testach przeprowadzonych w warunkach in vivo i in vitro. W dawkach nietoksycznych dla matek uwodornione terfenyle nie indukowały wad wrodzonych u potomstwa szczurów. Analiza wyników badań toksyczności uwodornionych terfenyli dla zwierząt laboratoryjnych nie pozwala na wskazanie skutku krytycznego. Stwierdzono wprawdzie w następstwie narażenia, przede wszystkim drogą inhalacyjną i w mniejszym stopniu drogą pokarmową – wzrost względnej i bezwzględnej masy wątroby oraz zmiany aktywności enzymów wątrobowych, ale zmiany te miały raczej charakter adaptacyjny niż wskazywałyby na toksyczne działanie uwodornionych terfenyli. Podstawą wyliczenia wartości najwyższego dopuszczalnego stężenia (NDS) uwodornionych terfenyli było badanie toksyczności inhalacyjnej uwodornionego w 40% Therminolu 66 o stężeniach: 10; 100 lub 500 mg/m3, na który szczury obu płci narażano przez 14 tygodni, 6 h dziennie, 5 dni w tygodniu. Do wyliczenia war-tości NDS uwodornionych terfenyli przyjęto wartość LOAEL 100 mg/m3 i łączny współczynnik nie-pewności równy 8. Wyliczona wartość NDS uwodornionych terfenyli wynosi 12,5 mg/m3. Uwodor-nione terfenyle nie działają drażniąco, dlatego nie ma podstaw do ustalania dla nich wartości najwyż-szego stężenia chwilowego (NDSCh).
EN
Hydrogenated terphenyls are a mixture of ortho-, meta- and para- isomers of terphenyl in various stages of hydrogenation. Hydrogenated terphenyls are clear, oily, pale-yellow liquids that dissolve slowly in acetone and weakly in ethanol. They are used as heat transfer fluids, solvents, lubricants, and as nuclear and hydraulic coolants. Acute oral LD50 values for 40% hydrogenated terphenyls for rats are 17500 mg/kg b.w. or 10200 mg/kg b.w., for mice - 12500 mg/kg b.w.; CL50 for rats – 11100 mg/m3. Hydrogenated terphenyls (40%) are hepatotoxic agents for rats. Repeated inhalation or dietary exposure induced an increase in liver weight and increasedthe activity of drug-metabolizing enzymes: ethoxycoumarinO-deetylase and aryl hydrocarbon hydroxylase in the liver. Hydrogenated terphenyls (40%) are not mutagenic orgenotoxicor carcinogenic. At doses non-toxic for mothers they did not induce malformations in rats. Hydrogenated terphenyls (40%) did not much accumulate in the tissue of rats. Faeces are the primary elimination after oral administration; half-life is 14h. The proposed occupational exposure limit TWA of 12.5mg/m3 for hydrogenated terphenylsis based on the LOAEL of 100 mg/m3. Hepatotoxic effects observed in rats exposed toTherminol 66 by inhalation were not toxic. Considering that hydrogenated terphenyls (40%) do not produce irritating effects , the Expert Group has not established a STEL value.
EN
Existing upper extremity musculoskeletal disorder analytical tools are primarily intended for single or monotask jobs. However, many jobs contain more than 1 task and some include job rotation. This case/control study investigates methods of modifying an existing tool, the American Conference of Governmental Industrial Hygienists (ACGIH) Hand Activity Level (HAL) Threshold Limit Value (TLV), to assess the upper extremity risk of multi-task jobs. Various methods of combining the task differences and ratios into a job level assessment were explored. Two methods returned significant odds ratios, (p < .05) of 18.0 (95% CI 1.8–172) and 12.0 (95% CI 1.2–120). These results indicate that a modified ACGIH HAL TLV may provide insight into the workrelated risk of multi-task jobs. Further research is needed to optimize this process.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.