Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  TEM observation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The results of structure observations of Ni base superalloy subjected to long-term influence of high pressure hydrogen atmosphere at 750K and 850K are presented. The structure investigation were carried out using conventional light-, scanning- (SEM) and transmission electron microscopy (TEM). The results presented here are supplementary to the mechanical studies given in part I of this investigations. The results of study concerning mechanical properties degradation and structure observations show that the differences in mechanical properties of alloy subjected different temperature are caused by more advanced processes of structure degradation during long-term aging at 850K, compare to that at 750K. Higher service temperature leads to formation of large precipitates of δ phase. The nucleation and growth of needle- and/or plate-like, relative large delta precipitates proceed probably at expense strengthening γ" phases. Moreover, it can't be excluded that the least stable γ" phase is replaced with more stable γ' precipitates. TEM observations have disclosed differences in dislocation structure of alloy aged at 750K and 850K. The dislocation observed in alloy subjected to 750K are were seldom observed only, while in that serviced at high stress and 850K dislocation array and dislocation cell structure was typical.
EN
The article deals with the influence of annealing parameters on evolution of microstructure and mechanical properties of dual phase steel. Dual phase steel was annealed in laboratory conditions according to the three chosen cycles of annealing: into intercritical region (780°C), into austenite region (920°C) and into austenite region (920°C) by subsequently cooling into intercritical region (780°C) with the hold at the temperature of 495°C. Simulation of annealing regimes by thermo-mechanical simulator Gleeble was done. The obtained microstructure consists from three phases: ferritic matrix, martensite and martensite/ bainite grains. For the microstructure identification the TEM and nanoindentation experiments were performed.
PL
Praca dotyczy wpływu parametrów wyżarzania na zmiany mikrostruktury i właściwości mechaniczne stali dwufazowej C-Mn. Stal dwufazową poddano wyżarzaniu w warunkach laboratoryjnych według trzech wybranych cykli: w zakresie między krytycznym (780°C). w obszarze austenitu (920°C) i w obszarze austenitu (920°C) ze schładzaniem do zakresu międzykrytycznego (780°C) przy temperaturze wytrzymania 495°C. Przeprowadzono symulację schematów wyżarzania przy użyciu symulatora obróbki cieplno-plastycznej Gleeble. Uzyskana mikrostruktura składa się z trzech faz: osnowy terrytycznej. martenzytu oraz ziaren martenzytu/bainitu. W celu identyfikacji mikrostruktury wykonano badania metodą TEM oraz nanoindentacji.
PL
W celu zmniejszenia czasochłonności typowych zabiegów obróbki cieplnej stosowanych w warunkach technologicznych, podjęto próby wykorzystania niekonwencjonalnego sposobu starzenia stopu 7075 w warunkach (1) nagrzewania ze stałą prędkością po uprzednim przesyceniu materiału, oraz (2) próby starzenia w warunkach odkształcania w podwyższonej temperaturze, które sprzyjają wydzielaniu dynamicznemu. Pierwszy sposób realizacji procesu starzenia obejmował nagrzewanie z prędkością 5 i 25 [stopni] C/min, analizę kalorymetryczną i pomiar twardości próbek nagrzanych do określonej temperatury i ochłodzonych w wodzie. Maksymalną twardość dla próbek nagrzewanych z prędkością 5 [stopni] C/min - 154 HV - uzyskano po nagrzaniu do temperatury 225 [stopni] C, natomiast dla 25 [stopni] C/min uzyskano 142 HV po nagrzaniu do 250 [stopni] C. W porównaniu do starzenia przy stałej szybkości nagrzewania, maksymalne umocnienie przesyconego stopu w warunkach odkształcania ze stałą prędkością obserwowano w temperaturze 100-200 [stopni]C. Najwyższą twardość - 190 HV - uzyskano po odkształceniu et 0,4 w temperaturze 100 [stopni]C. Stwierdzono, że wyższa twardość materiału odkształconego w warunkach wydzielania dynamicznego wynika z nałożenia się i wzajemnego oddziaływania procesów starzenia i odkształcania, natomiast niższa temperatura uzyskania maksimum twardości wynika ze złożonego oddziaływania wymienionych procesów strukturalnych i końcowego efektu umocnienia odkształceniowo-wydzieleniowego. Czas starzenia w powyższych próbach starzenia jest wielokrotnie krótszy (1-40 min) niż w konwencjonalnych zabiegach izotermicznego starzenia (kilka godzin), jednakże uzyskane wyniki pomiarów twardości są nieco niższe niż podawane dla wyrobów w stanie T6.
EN
Conventional ageing procedures for precipitation-hardenable aluminum alloys include the solution heat treatment and following natural or artificial ageing. The most effective hardening is usually achieved for prolonged ageing at as low temperature as it is acceptable from the practical point of view. To omit time-consuming methods used in an industrial practice, some unconventional ageing procedures were proposed and tested to analyze related structural and mechanical aspects of the hardening processes. Nonconventional methods of the heat treatment described below include: (1) experiments on the ageing of solution treated AA7075 alloy during monotonic temperature increase and at constant heating rate, and (2) during hot deformation of solution treated samples. The first mentioned ageing procedure was performed at constant heating rate of 5 and 25 [degrees] C/min for the samples solution treated at 470 [degrees] C/1h. Solid solution decomposition and following precipitation sequences were traced by means of the dilatometer scanning calorimetry (DSC) method accompanied by the hardness measurements. It was found that the heating parameters i.e. heating rate and final temperature of the sample, have to be very carefully selected to get the hardness maximum. Maximum hardness 154HV at 225 [degrees] C, and 142HV at 250 [degrees]C was reached at the heating rate 5 and 25 [degrees] C/min, respectively. Hot compression tests at constant deformation rate were performed on overaged and solution treated samples to test the effect deformation temperature on the flow stress at 20-500 [degrees]C. Solution treated samples were annealed at 470 [degrees] C/1h and water quenched. Overaged samples were slowly cooled with a furnace after annealing. Hot deformation of overaged samples was found to result in monotonic decrease of the flow stress with increasing deformation temperature. The most effective hardening of the solution treated material was observed at 100-200 [degrees] C. The flow stress value for solution treated samples was twice as that for overaged samples. It was ascribed to the combined dynamic precipitation effect and effective strain hardening being intensified due to suppressed dynamic recovery at dynamic precipitation conditions. Maximum hardness for solution treated and hot deformed samples was observed at deformation temperature 100 [degrees] C. For comparison, the hardness maximum for the samples aged at constant heating rate was reached 225-250 [degrees] C. Such large difference in the hardness maximum development can result from the complex strain-precipitation interaction during dynamic precipitation and some differences in the precipitation mechanisms. Hot deformation gives an additional power to the precipitation process due to intensified nucleation of particles on dislocation tangles. Moreover, it is commonly believed that the deformation process result in an increase of point defects density that intensify the diffusion process. In consequence, both heterogeneous precipitation on dislocations and intensified diffusion process can be responsible for the acceleration of the precipitates growth and related reduction of the maximum hardening temperature for the hot deformed material.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.