Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  TDDFT
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aims of this study were to enhance electronic, photophysical and optical properties of molecular semiconductors. For this purpose, the isomers of the B-doped molecule (5,5′-Dibromo-2,2′-bithiophene) have been investigated by density functional theory (DFT) based on B3LYP/6-311++G** level of theory. The isomers were first calculated using kick algorithm. The most stable isomers of the B-doped molecule are presented depending on the binding energy, fragmentation energy, ionization potential, electron affinity, chemical hardness, refractive index, radial distribution function and HOMO-LUMO energy gap based on DFT. Ultraviolet-visible (UV–vis) spectra have been also researched by time-dependent (TD) DFT calculations. The value of a band gap for isomer with the lowest total energy decreases from 4.20 to 3.47 eV while the maximum peaks of the absorbance and emission increase from 292 to 324 nm and 392 to 440 nm with boron doped into 5,5′-Dibromo-2,2′-bithiophene. Obtained results reveal that the B-doped molecule has more desirable optoelectronic properties than the pure molecule.
EN
A dye-sensitized solar cell (DSSC) was assembled using a dye 4-(3-chloro-1, 4-dioxo-1, 4-dihydronaphthalen-2-ylamino) benzoic acid with ZnO as a photo anode. It was synthesized using 2, 3-dichloro 1, 4-naphthoquinone and p-amino benzoic acid. The spectral features of the dye were analyzed in ethanol using experimental and computational methods. The theoretical investigations revealed that the synthesized dye may act as a sensitizer in DSSCs. The photo electrochemical performance was tested under direct sunlight using a sandwich type DSSC. The photovoltaic data of the dye adsorbed on ZnO films indicated the power conversion efficiency of 1.07 % under sunlight with a light intensity of 39 mW·cm-2.
EN
The increasing interest in molecular systems exhibiting ESIPT reaction has triggered – due to their broad field of potential applications – an extensive search for properly substituted compounds with well-tailored properties. This review is based on selected papers dealing with some commonly known ESIPT systems modified by specific substituents. The results of several studies concerning the rate of ultrafast ESIPT reactions in supersonic molecular beams are presented. Articles reporting on phototautomeric fluorescence in solutions illustrated a big role of substituents, which influence the emission quantum yield. Theoretical works pointed to the increasing role of advanced calculations in predicting and understanding the structural, electronic, and spectroscopic properties of diverse ESIPT-capable compounds.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.