Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  TA15 titanium alloy
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
To investigate the effect of cyclic heat treatment on the microstructure evolution of titanium alloys, TA15 alloys were subjected to different numbers of heat treatment cycles at various temperatures in the (α + β) two-phase region. The resulting microstructure and hardness of the alloy were characterized by using the metallographic microscopy, scanning electron microscopy, and Vickers hardness testing. The morphology of the initial TA15 alloy was nearly equiaxed structure. The α phase content, thickness of the oxygen-rich α layer, and hardness of the TA15 alloy increased with the number of cycles. The morphology of the TA15 alloy changed into the Widmannstatten structure when the alloy underwent six cycles of heat treatment between 970 and 800°C. The thickness of the oxygen-rich α layer and hardness of the alloy increased with the lower limit temperature of the cyclic heat treatment. Compared with the number of cycles, the lower limit temperature of the cyclic heat treatment was a more significant factor on the microstructure evolution of the TA15 titanium alloy.
EN
This paper studied the effect of laser welding technology on dissimilar metal welding joints of TA15 titanium alloy and Inconel 718 nickel-based alloy. The research results indicate that the laser welding of TA15 titanium alloy and Inconel 718 nickel-based alloy directly was difficult to form well, which due to the intermetallic compounds caused the joint brittle. When the pure Cu foil was used as the filling layer, the quality of the welding joints can be improved effectively. The experimental results also indicate that there were brittle intermetallic-compounds in the laser welding seam, and the laser power had an important influence on the performance and mechanical properties of the dissimilar metal joint. The maximum average tensile strength of the welding joint of 2300 W was increased to 252.32 MPa. Scanning electron microscope(SEM) results show that the fracture morphology was river pattern, a typical morphological of cleavage fracture, and the mode was brittle fracture.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.