Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  T-junction
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents the results of a computational fluid dynamics (CFD) analysis of gas-liquid multiphase flow. The simulation was conducted using CFD code and the Euler–Euler approach. The presented study relates to the non–reactive, steady-state, turbulent flow of water and carbon dioxide mixture in a 3D pipe. Separation phenomenon between phases is observed. The solution was obtained using a mixture model. Different values of carbon dioxide volume fraction were taken into account in the analysis of the results. The analysed cases were compared thanks to the obtained calculations results. The main purpose of the simulations was to show streamlines, velocity, pressure, and volume fraction distribution that could be useful in developing pipeline systems in many industrial applications, especially for CO2 separators.
2
Content available remote Simulation and design of a wideband T-shaped photonic crystal splitter
EN
In this paper, a high efficiency 2-D T-shaped photonic crystal beam splitter is proposed. It consists of a square lattice of GaAs rods (n = 3.4) embedded in air. The photonic crystal structure proposed can be used for 1550 nm wavelength, which is an important wavelength for optical fiber data transmission. Finite difference time domain (FDTD) simulation results demonstrate that a conventional T-junction can only provide 78% transmission coefficient (39% for each branch) for the incident light, while the proposed T-shaped splitter transmits over 90% of the incident light beam (over 45% from each branch) in the single mode region of waveguide. Especially it transmits nearly 98% (49% from each branch) of the input light in the wavelength of 1550 nm. In other words, the proposed devise shows higher beam splitting efficiency and a wider range of flatness of transmission power spectrum in comparison with previous works.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.