Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  T-RFLP
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Nowadays, genetically modified plants are cultivated in many countries and it is important to consider their safety for surrounding environment. So, the environmental risk assessments of genetically modified plants are evaluated. This assessment consists of an objective evaluation of risk and involves generating; collecting and assessing of information on a GM plant with the aim to determine its impact on human or animal health and the environment relative to non-genetically modified organisms. One of the numerous methods used to investigate the impact of GM plants on the environment is the Terminal Restriction Fragment Length Polymorphism. This method was used for comparison of genetic variation in populations of bacteria isolated from rhizosphere of genetically modified maize MON810 carrying the gene cry1Ab and genetically non-modified maize. Rhizosphere samples were collected in Slovakia during two years (2008, 2009) in July and September and 16S rRNA gene was amplified from metagenomic DNA using universal eubacterial primers. Differences in the number of terminal restriction fragments between control and GM maize hybrids were not detected. Additionally, variation within bacterial communities composition from rhizosphere of MON810 and non-GM hybrids was not observed, nevertheless negligible differences in composition of bacterial community were observed between two sampling periods (July and September). These changes were observed in non-GM as well as in GM maize hybrids and reflected effects of environment and conditions, no influence of genetic modification. The 16S rDNA clone library creation from rhizosphere sample of MON810 maize followed by DNA sequencing revealed that the Proteobacteria were major group of bacteria and Actinobacteria, Firmicutes, and Chloroflexi were less represented. This study did not confirm any changes in the soil ecosystem, which would have been larger than normal variations caused by external conditions.
EN
The Gulf of Gdańsk is influenced by freshwater inflow from the River Vistula and by a wind-driven current along the coast. Bacterial communities from five stations along a salinity gradient were sampled during one day and analysed by terminal restriction fragment length polymorphism (T-RFLP), catalysed reporter deposition-fluorescence in situ hybridisation (CARD-FISH) and 16S rRNA gene libraries. On the day of sampling, we observed a probable current-driven seawater influx into the inner part of the gulf that separated the gulf into distinct water bodies. Members of the diatom Coscinodiscus sp. dominated one of these water bodies and influenced the bacterial community. The coexistence of typically freshwater and marine bacterioplankton populations in the Vistula river plume suggested an integration of some freshwater populations into the Baltic Sea bacterioplankton.
EN
Conversion of land from wetland to agricultural management practices can lead to significant changes in nutrient rich topsoil, which may have an impact on microbial community structure in soils. However, little is known about how long-term (ca. 40 years) rice cultivation, one of major agricultural management practices in many regions, influence soil microbial biomass and community structure. Soil samples were collected from a wetland and paddy field in Anhui province in eastern China to examine soil physical and chemical characteristics and associated soil microbial biomass and community composition. Microbial community composition was assessed using phospholipid fatty acid (PLFA) analysis, terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes. Results indicated that soil moisture content, pH, soil organic carbon, total nitrogen and NH4[^+]-N contents were significantly lower in the paddy field in comparison to the wetland. Total microbial biomass showe showed a slightly significant decrease in the paddy field, however, there were significant shifts in the composition of the microbial communities based on the PLFA and T-RFLP fingerprintings in the both ecosystems. Signature PLFA analysis revealed that the sum of bacterial PLFAs and the relative proportions of Gram negative bacterial specific PLFAs significantly decreased in the paddy field, nonetheless, the relative numbers of actinobacterial, Gram positive and fungal PLFAs as well as the ratio between the bacterial and fungal PLFAs were not affected by the long-term agricultural management. These results revealed that long-term rice cultivations not only drastically decreased soil nutrients but also leaded to shifts in the soil microbial community structure, which would be helpful to provide a better understanding of wetland conservation and management practices.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.