Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Starunia palaeontological site
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The discovery of large Pleistocene mammals at the Starunia ozokerite (named also earth wax) mine (the Ukrainian Carpathians) was a spectacular scientific event on a world scale. The initial discovery was made in I907 when relics of party preserved mammoth and woolly rhinoceros were excavated. Later, in 1929, the Polish Academy of Arts and Sciences organized a scientific expedition to that site, which resulted in discovery of unique, nearly completely preserved woolly rhinoceros carcass embedded in Pleistocene sediments. A specific combination of brine, oil and clays into which the animal had sunk, is responsible for almost perfect preservation of this animal. The specimens found in 1907 are exhibited at the Natural History Museum in Lviv, Ukraine, whereas the unique specimen excavated in 1929 is displayed at the Natural History Museum in Kraków, Poland. The three sites: Starunia, a small Ukrainian village in which the geoparkwith the museum and the tourist centre are planned to be developed and two historical towns: Lviv and Kraków, closely connected with the discoveries of extinct large mammals, will be the key sites at the planned, Ukrainian-Polish trans-border geotourist trail "Traces of large extinct mammals, earth wax, oil and salt: from Starunia to Kraków": The trail will also include the sites where occurrences of ozokerite, salt, brine and oil are known, i.e., the substances which preserved the animal carcasses. These are: the historical rock-salt mines in Wieliczka and Bochnia (Poland), Kalush and Stebnik (Ukraine), the Polish resorts-Iwonicz-Zdrój and Rymanów-Zdrój and the most famous Ukrainian resort - Truskavets; one of the oldest oilfields in the world - Bóbrka, where the Ignacy Łukasiewicz Memorial Open-Space Museum of Oil and Gas Industry is located and Boryslav oil and ozokerite field - the largest deposit in the Ukrainian Carpathians. The idea of Ukrainian-Polish trans-border tourist trail is strongly supported by geological, natural and cultural values of the Polish and the Ukrainian Carpathians.
PL
Odkrycia wielkich ssaków plejstoceńskich w kopalni ozokerytu w Staruni (region karpacki, Ukraina) były spektakularnym wydarzeniem naukowym w skali światowej. W 1907 r. znaleziono szczątki mamuta i nosorożca włochatego. Później, w roku 1929, Polska Akademia Umiejętności zorganizowała ekspedycję, podczas której w osadach plejstoceńskich znaleziono prawie całkowicie zakonserwowany okaz nosorożca włochatego. Za jego doskonałe zachowanie jest odpowiedzialna specyficzna mieszanina solanki, ropy naftowej i iłów, w której utonął olbrzymi ssak. Okazy odkryte w 1907 r. znajdują się w Muzeum Przyrodniczym we Lwowie, a unikatowy egzemplarz znaleziony w 1929 r. w Muzeum Przyrodniczym w Krakowie. Te trzy miejscowości: Starunia, niewielka wioska ukraińska, w której planuje się utworzenie geoparku i centrum muzealniczo-turystycznego oraz dwa historyczne miasta Lwów i Kraków, ściśle związane z tymi znaleziskami, będą stanowić główne, węzłowe miejsca planowanej ukraińsko polskiej trasy geoturystycznej "Śladami olbrzymich wymarłych ssaków, (wosku ziemnego ropy naftowej i soli od Staruni do Krakowa". Do trasy zostaną też włączone miejsca związane z występowaniem, ozokerytu, soli, solanki i ropy naftowej, a więc czynnikami, które spowodowały zakonserwowanie tych zwierząt: historyczne kopalnie - Wieliczka i Bochnia oraz Kałusz i Stebnik, polskie uzdrowiska - Iwonicz-Zdrój i Rymanów-Zdrój oraz znane uzdrowisko ukraińskie - Truskawiec; złoże ropy naftowej w Bóbrce - jedno z najdawniej eksploatowanych złóż na świecie, w której znajduje się Skansen - Muzeum Przemysłu Naftowego i Gazowniczego im. Ignacego Łukasiewicza oraz złoże ropy naftowej i ozokerytu Borysław- największe w Karpatach ukraińskich. Za realizacją projektu utworzenia ukraińsko polskiej trasy geoturystycznej przemawiają walory geologiczne, przyrodnicze i kulturowe Karpat polskich i ukraińskich.
EN
The near-surface geochemical survey of gases desorbed from sediment samples was carried out in the area of an abandoned ozokerite mine in Starunia, where remnants of mammoth and three woolly rhinoceroses and one almost completely preserved rhinoceros carcass were discovered in 1907 and 1929. Numerous hydrocarbon seeps (gas and oil "eyes") occur on the surface of the study area. Analyses of molecular and stable carbon isotope compositions of adsorbed gases were carried out in two variants. The first included sampling of cuttings from 30 auger boreholes at depths of 4.8, 5.6 and 6.4 m. In total, 88 samples were collected. In the second variant core samples were collected from 17 selected boreholes. In total, 78 samples were taken from various depths to 12 m. The results of molecular composition analyses of desorbed gases indicated high saturation of near-surface sediments with the oil. The highest concentrations of alkanes were detected in Miocene strata. Hydrocarbon migration from deep accumulations to the surface was relatively fast and proceeded along the faults, fractures and cracks. In the near-surface zone hydrocarbons were subjected to oxidation and dehydrogenation, which resulted in generation of unsaturated hydrocarbons and hydrogen. These processes were most intensive in the Pleistocene sediments and in the mine dumps. Increased concentrations of hydrogen may also originate from water radiolysis in the presence of hydrocarbons. Concentrations of carbon dioxide in the adsorbed gases show the higher values in comparison with the analysed gaseous compounds. However, a slight increase in CO2 concentration was detected in the mine dump, which may indicate conditions more favourable for hydrocarbon oxidation. Carbon dioxide from the analysed adsorbed gases is of thermogenic origin. Occasionally, insignificant influence of secondary hydrocarbon oxidation and/or Quaternary organic matter can be observed. Concentrations of alkanes, alkenes and carbon dioxide in the gas derived from desorption of rock samples are lower and the concentration of hydrogen is higher than those measured in free gases. This indicates that additional effects from recent (e.g. microbial) processes are absent.
EN
The microbiological research on the area of the palaeontological site in Starunia (Ukraine) reveals the details of biological activity of the near-surface layers and Quaternary sediments. In Starunia area remnants of a mammoth and three woolly rhinoceroses, and one almost completely preserved rhinoceros carcass were found in 1907 and 1929. The gained quantitative results regarding the occurrence of different physiological groups of microorganisms show that their number varied significantly depending on the sampling place, sampling depth, pH, humidity and the organic matter content. The amount and differentiation of the tested groups of microorganisms typically decreased with the depth. In several deep-sampling locations there was increase in the microorganisms, especially with methanogens and methanotrophs. The metanogens occurred mainly in Pleistocene sediments, comprised of clayey mud and peat, while saprophytic microorganisms (bacteria, fungi and actinomycetes) occur in Holocene sediments comprised of clayey mud, peat and peat mud. The quantity of microorganisms in selected boreholes was related to high concentration of the organic matter (mainly peat and peat mud) and correlated with methane occurrence.
EN
Near-surface gases were investigated in Starunia, where remains of mammoth and woolly rhinoceroses were discovered at the beginning of the 20th century. Samples were collected at 30 measurement sites, from 0.8, 1.6, 2.4, 3.2 and 4.0 m depths and analysed for their molecular and isotopic compositions. Most of the methane and all higher gaseous hydrocarbons accumulated within the near-surface zone are of thermogenic origin. The distribution of thermogenic methane and higher gaseous hydrocarbons in Quaternary sediments is variable and, generally, increases with depth. Microbial methane or a mixture of microbial and thermogenic methane also occurs at the near-surface zone. The presence of hydrogen and alkenes in the near-surface gases also suggests a contribution from recent, microbial processes. Helium of crustal origin migrated through the Rinne Fault and other tectonic zones located in the study area, and was subsequently dispersed during migration through the lithologically diversified Pleistocene and Holocene sediments. The high variability of the carbon dioxide concentration and stable carbon isotope composition at various depths in the near-surface zone is caused by its polygenetic origin (thermogenic, microbial, and oxidation of hydrocarbons and Quaternary organic matter), and also by its dissolution in water and oil during migration through lithologically diversified Pleistocene and Holocene sediments. Zones of thermogenic methane occurrence within Pleistocene sediments, dominated by muds saturated with bitumen and brines, provide the most favourable environment for preservation of large extinct mammals. It is likely that during the Pleistocene winters, when thick ice and snow covered the tundra lake and swamp, zones of outflow of brines, oils, helium, and thermogenic gaseous hydrocarbons had a higher temperature, which could have resulted in melting and cracking of the ice cover and drowning of large mammals. The most favourable conditions for preservation of large, extinct mammals probably still exists in the vicinity of sampling probe sites Nos 21, 22, 23 and 36. Zones of dominance of microbial methane concentrations are less favourable sites for preservation of extinct mammals, because this methane was generated within recent swamps and also within recent descending meteoric waters which infiltrated into Pleistocene and Holocene sediments. Older Pleistocene microbial gases have already escaped to the atmosphere.
EN
Geochemical studies were conducted on bitumen and salts saturating the Pleistocene and Holocene sediments from an abandoned ozokerite mine in Starunia. This location is noted for the discovery of remnants of a mammoth and three woolly rhinoceroses in 1907, and a nearly completely preserved rhinoceros carcass in 1929. The bitumen (oil) and brines (chloride ions) were preserving agents for the large Pleistocene mammals. The main mass of organic carbon hosted in the Pleistocene muds is related to bitumen originating from oil migrating from deep accumulations within the Boryslav-Pokuttya Unit. The highest analysed bitumen content is 9.26 wt%. The chloride ion content, originating from highly concentrated brines ascending from the salt-bearing Miocene Vorotyshcha beds, vary from 0 to 4.66 wt% but this usually does not exceed 1 wt%. The natural pathways of underground fluids (oil, gas and water) migration within the Quaternary sediments were disturbed by intensive ozokerite mining operations run between the last three decades of the 19th century and 1960. Therefore, the present preservation and conservation conditions of large, extinct mammals' remains can be different from those prevailing during the Pleistocene, when the mammals were buried. Taking into consideration the contents of the remaining preservatives: chloride and bitumen, the most favourable zone for fossils conservation and preservation is located close to boreholes Nos 22, 23, 28 and 36N, where the thickness of Pleistocene muds exceeds 2 metres. Generally, the spatial distributions of bitumen and chloride ion contents within the Holocene sediments and salt-bearing Miocene Vorotyshcha beds are very similar to those in the Pleistocene sediments.
EN
Biological markers and stable carbon isotopic compositions of bitumen impregnating the Pleistocene and Holocene sediments around the Starunia palaeontological site (Carpathian region, Ukraine) near discovered remnants of a mammoth and three woolly rhinoceroses, and one almost completely preserved rhinoceros carcass found in 1907 and 1929, were investigated. The research was carried out to assess genetic connections between the bitumen and oils from the nearby deep accumulations of the Boryslav-Pokuttya and Skyba units of the Carpathians. Another aim of these geochemical studies was to reveal the secondary geochemical processes (oxidation and biodegradation) influencing the bitumen, and to determine which environments have been favourable or unfavourable for the preservation of large Pleistocene vertebrates. Bitumen included within the near-surface rocks are not genetically connected with residual organic matter present in Quaternary sediments. Geochemical features, such as distributions of pentacyclic triterpanes and steranes, biomarker parameters and isotope composition indicate that all bitumens originate from oil-prone, Type II kerogen with insignificant admixture of terrestrial Type III kerogen in the middle stage of catagenesis. The oils occurring in deep accumulations in the Starunia area were the sole source of bitumen found in the near-surface sediments. Input of immature organic matter to bitumen from Pleistocene and Holocene sediments has not been found. The main factors differentiating the bitumen were: biodegradation, water washing and/or weathering. Additional influence of transport of bitumen by brine was found. The most favourable conditions for preservation of large, extinct mammals within the Pleistocene muds exist in the vicinity of Nos 22 and 23 boreholes, where bitumen is best preserved. The worst conditions were found in the vicinity of Nos 1, 4, 4' and 15 boreholes. Intensification of biodegradation and weathering effects were followed by intensive, chaotic changes of the remnants of large Pleistocene mammals.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.