Let Sn be the total gain in n repeated St. Petersburg games. It is known that n−1(Sn − n log2 n) converges in distribution along certain geometrically increasing subsequences and its possible limiting random variables can be parametrized as Y (t) with t ∈ [1/2, 1]. We determine the Hausdorff and box-counting dimension of the range and the graph for almost all sample paths of the stochastic process {Y(t)}t∈[1/2, 1]. The results are compared to the fractal dimension of the corresponding limiting objects when gains are given by a deterministic sequence initiated by Hugo Steinhaus.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.