Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Soret effect
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Navier slip condition on time-dependent radiating Nanofluid with the soret effect
EN
This work concentrates on the study of the two-dimensional hydromagnetic flow of nanofluids over an suddenly started nonlinear stretching sheet in the presence of radiation and dissipation. The Soret effect and heat generation are also taken into consideration. The transformed ordinary differential equations (ODEs) are solved numerically via the MATLAB RK4S approach bvp4c solver with the assistance of similarity variables. The effects of various parameters are explored and shown in graphs and tables. It is noted that the concentration increases as the Soret number increases within the boundary layer. An increase in velocity slip decreases the velocity and a reverse effect is observed for temperature. This model has significance in different areas such as polymer chemical and metallurgical industries, and other fields that use the latest technology and thermo-processed materials such as metallic and glass sheets.
EN
In this paper, we investigate the Dufour and Soret effects on MHD mixed convection of a chemically reacting fluid over a stretching surface in a porous medium with convective boundary condition. The similarity transformation is used to reduce the governing non-linear partial differential equations into ordinary differential equations. Then, they are solved analytically by using the homotopy analysis method (HAM) and are solved numerically by the Runge-Kutta fourth-order method. The analytical and numerical results for the velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number are discussed.
EN
A numerical investigation to discuss the effects of radiation and variable viscosity on heat and mass transfer characteristics of natural convection over a horizontal surface embedded in a saturated porous medium in the presence of internal heat generation is carried out in this study. The working fluid for the investigation is optically thick gray gas. The Dufour and Soret effects are also taken into account. Similarity transformations are employed to obtain nonlinear ordinary differential equations from the governing equations of the present problem. The numerical results for the transformed governing equations are computed by using commercial boundary value problem solver for ordinary differential equations. The effects are discussed by varying the parameters such as radiation, Dufour and Soret numbers, buoyancy ratio, Prandtl number, Schmidt number, and variable viscosity. Presence of internal heat generation enhances the velocity profile and significantly decreases the concentration boundary layer thickness. On increasing fluid radiation, the temperature of the fluid is higher than that of the surface and the concentration boundary layer thickness decreases away from the surface.
EN
The effect of Coriolis force on the Soret driven ferrothermohaline convection in a densely packed porous medium has been studied. A linear stability analysis is carried out using normal mode technique. It is found that stationary convection is favorable for the Darcy model, therefore oscillatory instability is studied. A small thermal perturbation is applied to the basic state and linear stability analysis is used for which the normal mode technique is applied. It is found that the presence of a porous medium favours the onset of convection. The porous medium is assumed to be variable and the effect of the permeable parameter is to destabilize the system. The present work has been carried out both for oscillatory as well as stationary instabilities. The results are depicted graphically.
EN
Soret driven ferrothermoconvective instability in multi-component fluids has a wide range of applications in heat and mass transfer. This paper deals with the theoretical investigation of the effect of temperature dependent viscosity on a Soret driven ferrothermohaline convection heated from below and salted from above subjected to a transverse uniform magnetic field in the presence of a porous medium. The Brinkman model is used in the study. It is found that the stationary mode of instability is preferred. For a horizontal fluid layer contained between two free boundaries an exact solution is examined using the normal mode technique for a linear stability analysis. The effect of salinity has been included in magnetization and density of the fluid. The critical thermal magnetic Rayleigh number for the onset of instability is obtained numerically for sufficiently large values of the buoyancy magnetization parameter M1 using the method of numerical Galerkin technique. It is found that magnetization and permeability of the porous medium destabilize the system. The effect of temperature dependent viscosity stabilizes the system on the onset of convection.
EN
This paper is focused on the study of heat and mass transfer in the unsteady MHD mixed convective flow of a viscous incompressible fluid bounded by a permeable vertical plate subject to the influence of buoyancy, viscous dissipation, ohmic heating and the Soret effect embedded with slip condition at the boundary layer. In order to obtain a better insight into this problem, we make use of the perturbation method. The results for velocity, temperature, concentration, skin friction, the Nusselt number as well as the Sherwood number are examined analytically and the effects of various significant parameters entering into this problem are displayed graphically.
EN
A non-similar boundary layer analysis is carried out to study the effect of Soret and Dufour on heat and mass transfer for a power-law, non-Newtonian fluid. Thermo-diffusion implies that the heat transfer is induced by concentration gradient, and thermo-diffusion implies that the mass diffusion is induced by thermal gradient. The resultant governing boundary-layer equations, highly non-linear and a coupled form of partial differential equations have been solved by employing a numerical, Runge-Kutta fourth order technique with a modified version of the Newton-Raphson shooting method. A parametric study of all parameters involved is conducted, and a representative of the results for the velocity, temperature, concentration profiles as well as the Nusselt and the Sherwood numbers are illustrated graphically to elucidate interesting features of the solutions.
EN
Steady two-dimensional free convection and mass transfer flow past a continuously moving semi-infinite vertical porous plate in a porous medium is studied theoretically, by taking into account the Dufour and Soret effects. The similarity equations of the problem considered are obtained by using usual similarity technique. The resulting equations are then solved numerically by shooting method using Runge-Kutta sixth-order integration scheme. The non-dimensional velocity, temperature and concentration profiles are displayed graphically for different values of the parameters entering into the problem. In addition, the skin-friction coefficient, the Nusselt number and Sherwood number are shown in tabular form.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.