Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Soret and Dufour effects
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The objective of the present work is to examine the characteristics of unsteady incompressible magnetohydrodynamic fluid flow around a permeable rotating vertical cone. The effects of thermal radiation, viscous dissipation, and the Soret and Dufour effects are investigated in the analysis of heat and mass transfer. The viscosity of the fluid is considered inversely proportional to the temperature, and the thermal conductivity of the fluid is considered directly proportional to the temperature. The governing equations are converted into ordinary differential equations using suitable similarity transformations, which are then solved numerically using bvp4c from MATLAB. Results obtained in this study are in excellent correlation with previously conducted studies. The results demonstrate that the Dufour and Soret effects subsequently reduce the heat transit rate (by 3.3%) and mass transit rate (by 1.2%) of the system. It is also detected that fluids with higher viscosity tend to increase tangential skin friction (+8.9%) and azimuthal skin friction (+8.3%). The heat transit rate of the system is found to be more efficient for fluids with higher viscosity and lower thermal conductivity and Eckert numbers. Furthermore, the thickness of the momentum, thermal, and concentration boundary layers significantly reduces while the heat and mass transit rates (+17.8% and +18.3%, respectively) of the system become more efficient for greater values of the unsteadiness parameter.
EN
This study performed a numerical investigation of the Soret and Dufour effects on unsteady free convective chemically reacting nanofluid flowing past a vertically moving porous plate in the presence of viscous dissipation and a heat source/sink. The equations direct-ing the flow are non-dimensionalised, modified to ordinary differential equations and emerging equations are resolved computationally by using the bvp4c function in MATLAB software. The results obtained from this analysis indicate that the resulting velocity of the nanofluid increases with increasing Grashof number, mass Grashof number and porosity parameter. An increase in the Dufour number increases the fluid temperature, whereas the concentration profile declines with the increase in the Schmidt number. It is also observed that the skin fric-tion coefficient, Nusselt number and Sherwood number increase with increasing magnetic field parameter, Eckert number and Schmidt number, respectively. The present study reveals the impact of Soret and Dufour effects on heat and mass transfer rates in chemically re-acting and viscous dissipating nanofluids.
EN
In this study, the Soret and Dufour effects in a composite stenosed artery were combined with an analysis of the effect of varying viscosity on copper nanofluids in a porous medium. Blood viscosity, which changes with temperature, is taken into account using the Reynolds viscosity model. The finite difference approach is used to quantitatively solve the governing equations. For use in medical applications, the effects of the physical parameters on velocity, temperature and concentration along the radial axis have been investigated and physically interpreted. The results are graphically displayed and physically defined in order to facilitate comprehension of the various phenomena that occur in the artery when nanofluid is present. It is observed that the Soret effect increases the rate of heat transfer but decreases the rate of mass transfer. The new study enhances knowledge of non-surgical treatment options for stenosis and other abnormalities, hence reducing post-operative complications. Additionally, current research may have biomedical applications such as magnetic resonance angiography (MRA), which provide a picture of an artery and enable identification of any anomalies, and thus may be useful
EN
A mathematical model for MHD blood flow through a stenosed artery with Soret and Dufour effects in the presence of thermal radiation has been studied. A uniform magnetic field is applied perpendicular to the porous surface. The governing non-linear partial differential equations have been transformed into linear partial differential equations, which are solved numerically by applying the explicit finite difference method. The numerical results are presented graphically in the form of velocity, temperature and concentration profiles. The effects of various parameters such as the Reynolds number, Hartmann number, radiation parameter, Schmidt number and Prandtl number, Soret and Dufour parameter on the velocity, temperature and concentration have been examined with the help of graphs. The present results have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.