Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Skagerrak
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An extensive data series of salinity, nutrients and coloured dissolved organic material (CDOM) was collected in the Skagerrak, the northern part of the Kattegat and off the Jutland west coast in April each year during the period 1996–2000, by the Institute of Marine Research in Norway. In this month, after the spring bloom, German Bight Water differs from its surrounding waters by a higher nitrate content and higher nitrate/phosphate and nitrate/silicate ratios. The spreading of this water type into the Skagerrak is of special interest with regard to toxic algal blooms. The quantification of the spatial distributions of the different water types required the development of a new algorithm for the area containing the Norwegian Coastal Current, while an earlier Danish algorithm was applied for the rest of the area. From the upper 50 m a total of 2227 observations of salinity and CDOM content have been used to calculate the mean concentration of water from the German Bight, the North Sea (Atlantic water), the Baltic Sea and Norwegian rivers. The Atlantic Water was the dominant water type, with a mean concentration of 79%, German Bight Water constituted 11%, Baltic Water 8%, and Norwegian River Water 2%. At the surface the mean percentages of these water types were found to be 68%, 15%, 15%, and 3%, respectively. Within the northern part of the Skagerrak, closer to the Norwegian coast, the surface waters were estimated to consist of 74% Atlantic Water, 20% Baltic Water, and 7% Norwegian River Water. The analysis indicates that the content of German Bight Water in this part is less than 5%.
2
Content available remote Transparency of the North Sea and Baltic Sea - a Secchi depth data mining study
EN
This paper presents the results of a Secchi depth data mining study for the North Sea - Baltic Sea region. 40,829 measurements of Secchi depth were compiled from the area as a result of this study. 4.3% of the observations were found in the international data centers [ICES Oceanographic Data Center in Denmark and the World Ocean Data Center A (WDC-A) in the USA], while 95.7% of the data was provided by individuals and ocean research institutions from the surrounding North Sea and Baltic Sea countries. Inquiries made at the World Ocean Data Center B (WDC-B) in Russia suggested that there could be significant additional holdings in that archive but, unfortunately, no data could be made available. The earliest Secchi depth measurement retrieved in this study dates back to 1902 for the Baltic Sea, while the bulk of the measurements were gathered after 1970. The spatial distribution of Secchi depth measurements in the North Sea is very uneven with surprisingly large sampling gaps in the Western North Sea. Quarterly and annual Secchi depth maps with a 0.5o × 0.5o spatial resolution are provided for the transition area between the North Sea and the Baltic Sea (4oE-16oE, 53oN-60oN).
3
Content available remote Spectral light absorption by yellow substance in the Kattegat-Skagerrak area
EN
More than 1500 water samples were taken from the Kattegat, the Skagerrak and adjacent waters. The value of the absorption coefficient of yellow substance at 310 nm was found to vary from 0.06 to 7.4 m-1 in the open coastal waters, with a mean value of 1.3 m-1. The corresponding wavelength-averaged value (250-450 nm) of the semilogarithmic spectral slope of the coefficient ranges from 0.008 to 0.042 nm-1, and the mean value is 0.023 nm-1. Closer to river discharges, as in the fjords, the values of the slope seem to be more constant at around 0.0175 š 0.0015 nm-1. In this area the slope must then be known in order to compare absorption at different wavelengths or to model the yellow substance absorption.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.