Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Silesian Ridge
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Exotic clasts present in flysch deposits of the Western Outer Carpathians enable investigation and reconstruction of the eroded crystalline basement of the Silesian Ridge. The flysch rocks of the Istebna Formation (Jasnowice Member: Paleocene) in the Silesian Nappe contain magmatic and metamorphic clasts derived from the Silesian Ridge basement. The crystalline rock fragments acquired from cohesive debrites were analyzed petrographically and geochemically, and zircon and rutile crystals were subject to LA-ICP-MS U-Pb dating. Granitoid clasts yielded Meso-Variscan U-Pb zircon ages (325.7 and 330.6 Ma), with older (Neoproterozoic to Paleoproterozoic) inherited cores and eNd330 = –12.0 (TDM age of 1.98 Ga). The orthogneiss clast yielded a protolith age of 1635 Ma and fingerprint of thermal reworking at ~288 Ma. Zircon crystals from the detrital clasts yielded similar U-Pb zircon ages to the granitoid clasts (311.5 to 391 and 331 Ma). The rutile crystals from sandstone yielded concordia age of 344.7 Ma. Zircon crystals from paragneiss, interpreted as a granitoid envelope, yielded 238U/206Pb ages between 557 and 686 Ma and include an inherited core of age ~1207.4 ±33.8 Ma. Age data from exotic clasts and the detrital zircon and rutile fraction suggest the core part of the Silesian Ridge was a Neoproterozoic to Mesoproterozoic envelope intruded by Meso-Variscan granitoid plutons.
EN
Limestones designated the Štramberk-type are the most common carbonate exotic clasts (exotics) embedded in the uppermost Jurassic–Miocene flysch deposits of the Polish Outer Carpathians. About 80% of stratigraphically determinable carbonate exotics from the Silesian, Sub-Silesian and Skole units (nappes) are of Tithonian (mostly)–Berriasian (sporadically Valanginian) age. A study of these exotics revealed eight main facies types: coral-microbial boundstones (FT 1), microencruster-microbial-cement boundstones (FT 2), microbial and microbial-sponge boundstones (FT 3), detrital limestones (FT 4), foraminiferal-algal limestones (FT 5), peloidalbioclastic limestones (FT 6), ooid grainstones (FT 7), and mudstones-wackestones with calpionellids (FT 8). Štramberk-type limestones in Poland and the better known Štramberk Limestone in the Czech Republic are remnants of lost carbonate platforms, collectively designated the Štramberk Carbonate Platform. Narrow platforms were developed on intra-basinal, structural highs (some of them are generalized as the Silesian Ridge), with their morphology determined by Late Jurassic synsedimentary tectonics. An attempt was made to reconstruct the facies distribution on the Tithonian–earliest Cretaceous carbonate platform. In the inner platform, coral-microbial patch-reefs (FT 1) grew, while the upper slope of the platform was the depositional setting for the microencruster-microbial-cement boundstones (FT 2). Microbial and microbial-sponge boundstones (FT 3), analogous to the Oxfordian–Kimmeridgian boundstones of the northern Tethyan shelf (also present among exotics), were developed in a deeper setting. In the inner, open part of the platform, foraminiferal-algal limestones (FT 5) and peloidal-bioclastic limestones (FT 6) were deposited. Poorly sorted, detrital limestones (FT 4), including clastsupported breccias, were formed mainly in a peri-reefal environment and on the margin of the platform, in a high-energy setting. Ooid grainstones (FT 7), rarely represented in the exotics, were formed on the platform margin. Mudstones-wackestones with calpionellids (FT 8) were deposited in a deeper part of the platform slope and/or in a basinal setting. In tectonic grabens, between ridges with attached carbonate platforms, sedimentation of the pelagic (analogous to FT 8) and allodapic (“pre-flysch”) Cieszyn Limestone Formation took place. The most common facies are FT 4 and FT 1. Sedimentation on the Štramberk Carbonate Platform terminated in the earliest Cretaceous, when the platform was destroyed and drowned. It is recorded in a few exotics as thin, neptunian dykes (and large dykes in the Štramberk Limestone), filled with dark, deep-water limestones. Reefal facies of the Štramberk Carbonate Platform share similarities in several respects (e.g., the presence of the microencrustermicrobial-cement boundstones) with reefs of other intra-Tethyan carbonate platforms, but clearly differ from palaeogeographically close reefs and coral-bearing facies of the epicontinental Tethyan shelf (e.g., coeval limestones from the subsurface of the Carpathian Foredeep and the Lublin Upland in Poland; the Ernstbrunn Limestone in Austria and Czech Republic). Corals in the Štramberk Limestone and Štramberk-type limestones are the world’s most diverse coral assemblages of the Jurassic–Cretaceous transition. The intra-basinal ridge (ridges), traditionally called the Silesian Cordillera, which evolved through time from an emerged part of the Upper Silesian Massif to an accretionary prism, formed the most important provenance area for carbonate exotic clasts in the flysch of the Silesian Series. They are especially common in the Lower Cretaceous Hradiště Formation and the Upper Cretaceous–Paleocene Istebna Formation. The Baška-Inwałd Ridge and the Sub-Silesian Ridge were the source areas for clasts from the Silesian and Sub-Silesian units (e.g., in the Hradiště Formation), while the Northern (Marginal) Ridge was the source for clasts from the Skole Unit (e.g., in the Maastrichtian–Paleocene Ropianka Formation).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.